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A use case of intelligent APIs

• A developer wants to add an auto-tagging feature to his photo gallery 
application

• He starts to use intelligent web APIs instead of building intelligent 
engine from scratch

• He expected that APIs are reliable and deterministic
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Issues on intelligent APIs

• Low reliability of results

• Results differs between similar endpoints
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Label Score

Animal 0.764

Cat 0.764

Mammal 0.764

Pet 0.764

Siamese 0.764

Label Score

dog breed group 0.876

nose 0.870

snout 0.836

dog like mammal 0.753

whiskers 0.745

fur 0.743

dog breed 0.728

puppy 0.595

paw 0.550

Label Score

dog 0.969

indoor 0.954

animal 0.885

mammal 0.719

close 0.317

Input Amazon Google Microsoft

Label Score

Animal 1

Carnivore 1

Close-up 1

Dog 1

Human leg 1

Mammal 1

Pet 1

Human arm 0

Human ear 0

Human eye 0

Human hand 0

Human head 0

Human mouth 0

Pig 0

Rabbit 0

Suidae 0

Wombat 0

Human-verified



Previous attempt for reliabilities

• Triple Modular Redundancy
• It emits the majority module output as a system output 

• Reliability of the system: � = �� + 3�� 1 − � = 3�� − 2��

• Useful when improving reliabilities using highly-reliable modules
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Research questions

1. Is it possible to improve reliability by merging multiple intelligent 
API results?

2. Are there better algorithms for merging these results than currently 
in use?
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API Facade

• � = < ��, �� >,< ��, �� >,…

• merge: �� → �

6

Facade

Endpoint 1

Endpoint 2

Endpoint 3

request

request

response (��)

request

response (��)

request

response (��)
merged
response
(�)



Four properties of merging operators

1. Identity
• � = merge(�)

2. Commutativity
• merge ��, �� = merge(��, ��)

3. Reflexivity
• � = merge(�, �)

4. Additivity
• Let � = merge ��, �� , �′ = merge ��′, �� be merged responses.

• �� and ��′ are same, except ��′has a higher score for label �� than ��.

• Then, �′ score for �� should be greater than or equal to � score for ��.
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Steps of merging

1. Groups labels into connected components (CCs)

2. Decides total number of labels

3. Allocates number of labels to CCs

4. Selecting labels from CCs
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S1. Grouping into CCs

• Groups labels into connected 
components of WordNet synsets

• Nodes
• Red: Labels from endpoint 1

• Yellow: Labels from endpoint 2

• Purple: Meaning (WordNet synset)
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S2. Total number of labels

• min
�

�� ≤
∑ ���

�
≤ max

�
�� ≤ ∑ ���

• The proposal uses 
∑ ���

�
to conform the four properties 
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S3. Similarity to proportional representation

• Allocating number of labels is similar to proportional representation

• Differences and assumption
• A CC which is supported by more endpoints should be more reliable
• In context of voting, a party which is supported by wide-range of people 

should have more seats
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Proportional representation Allocation to CCs

Party CC

Number of votes to a party Number of labels in a CC

Number of seats Number of labels to emit



S3. Allocation to CCs

• A CC with the highest product of highest 
scores receives one allocation
• Remove highest scores from the allocated CC

• If all CCs have an empty array, remove them
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L-1a, 0.9

L-1b, 0.8

L-1c, 0.7

L-2a, 0.9

L-2b, 0.8

L-2c, 0.7

CC1

CC2

CC3

CC Score Max Prod Alloc

1 [0.9, 0.8], [0.9] [0.9, 0.9] 0.81 0+1

2 [0.7], [0.8] [0.7, 0.8] 0.56 0

3 [], [0.7] [NA, 0.7] NA 0

CC Score Max Prod Alloc

1 [0.8], [] [0.8, NA] NA 1

2 [0.7], [0.8] [0.7, 0.8] 0.56 0+1

3 [], [0.7] [NA, 0.7] NA 0

CC Score Max Prod Alloc

1 [0.8], [] 1

2 [], [] 1

3 [], [0.7] 0

CC Score Max Prod Alloc

1 [0.8] [0.8] 0.8 1+1

2 [] [] NA 1

3 [0.7] [0.7] 0.7 0

Allocating 3 labels to 
3 CCs



S4. Selecting labels

• Selects labels with n-highest scores up to number of allocation

13

L-1a, 0.9

L-1b, 0.8

L-1c, 0.7

L-2a, 0.9

L-2b, 0.8

L-2c, 0.7

CC1

CC2

CC3

Allocation: 2

Allocation: 1

Allocation: 0



Evaluation

• Input
• 1000 images from Open Images 

dataset V4

• API endpoints
• Amazon

• Google

• Microsoft

• Merge operators
• Naive

• Min

• Max

• Average

• Traditional proportional 
representation
• D’Hondt

• Hare-Niemeyer

• Proposed
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Evaluation result 1

• Merging Amazon results and Microsoft results

• All three PP-based methods performs better than Amazon
• RQ1 is true
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F-measure

Microsoft
0.202

Amazon
0.246

Max, Avg
0.234

Min
0.237

Proposal
0.250

D’Hondt
0.262

Hare-Niemeyer
0.253

0.20 0.21 0.22 0.23 0.24 0.25 0.26



Evaluation result 2
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• Average of 4 combinations: {A, G}, {G, M}, {M, A}, {A, G, M}

• The proposal performs the best in F-measure
• RQ2 is true

Precision Recall F-measure

Min 0.780 0.151 0.252

Max 0.266 0.500 0.344

Average 0.266 0.500 0.344

D’Hondt 0.361 0.335 0.346

Hare-Niemeyer 0.361 0.336 0.347

Proposal 0.358 0.362 0.360

Correction on the paper:
Precision and recall values in 
Table 8 are wrong.
F-measure values in Table 8 and 
all values in Table 7 are correct.



Conclusion and future works

• Conclusion
• The proposed method merges API responses better than naive operators and 

other proportional representation methods

• The proposed method can be applied to other intelligent APIs
• If response type is a list of entity and score, and if there is a way to group entities

• Future works
• Use graph structure to improve reliability

• Selecting synsets instead of labels

• Propagating scores to synsets
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