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Research Approach
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▪ New approach that facilitates a large class of 
evolutionary modifications in distributed applications

▪ Novel, domain-specific automated refactoring—Client 
Insourcing—that moves remotely executed 
functionalities to be executed locally, thereby 
creating a semantically equivalent centralized 
version of the distributed application. 

▪ A centralized equivalent of a distributed application 
can serve as a faithful surrogate for various 
maintenance and evolutionary tasks
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Progress so far

13

▪ Client Insourcing & Debugging for Full-stack JS Apps
▪ ICWE’19, K.An and E.Tilevich (to be presented tomorrow)
▪ Distributed Apps written by same Language, JavaScript! 
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Progress so far
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▪ Trust Execution for Real-time Apps
▪ GPCE’18, Y. Liu, K. An and E. Tilevich
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Progress so far
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▪ Source-to-Source Translation with Rule Inference
▪ MobileSoft’18, K. An , N. Meng, and E. Tilevich
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Remaining work
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▪ Extend to Multilingual Distributed Apps
▪ Take advantage of Full-Stack JS apps:
▪ Lower maintenance costs (JS everywhere); same tools 

for the backend and frontend parts

JavaScript
Server

(JavaScript:Node.js)

Server
(Java:Spring)

Orig
inal

Adapted

Migration



Remaining Work: Conceptual Challenges
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▪ Bridging semantic differences between client and 
server languages (i.e., Java vs. JS)

▪ Emulating standard server language libraries and 
frameworks in the insourced code

▪ Ensuring requisite performance characteristics in 
redistributed code

▪ Multi-tier architecture. (i.e. Database)



Evaluation Plan
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▪ RQ1. Client Insourcing Value, Correctness, and Applicability: 
How much programmer effort does Client Insourcing save?

▪ RQ2. Applicability to Facilitating Evolutionary Modifications: 
What kind of evolutionary tasks can be facilitated by 
Client Insourcing? 

▪ RQ3. Maintaining Semantic Equivalence in the Presence of 
Client Insourcing Enhanced with Language Translation: How 
feasible is it to maintain the business logic of a distributed 
multilingual application by transforming it into a 
centralized monolingual application? 



Conclusions, Future Work, and Q&A
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▪ I have described my dissertation research, concerned 
with the challenges of evolving distributed apps to 
meet the continuously changing requirements 

▪ My research puts forward a radical notion that a 
centralized equivalent can serve as a faithful proxy 
of a distributed apps for software evolution tasks

▪ As a future work direction, we plan to generalize our 
approach to multilingual and multi-tier (database) 
applications


