
[ICWE’19 Doctoral Symposium]

Facilitating the Evolutionary 
Modifications in Distributed 
Apps via Automated Refactoring

Software Innovations Lab
Department of Computer Science
Virginia Tech
Ph.D Candidate

Kijin An
(advisor: Eli Tilevich)



Evolutionary Modifications

2

Software 
Applications
(Released Version)

Corrective
Modifications

Adaptive 
Modifications



Evolutionary Modifications

3

Corrective
Modifications

Adaptive 
Modifications

Server

Distributed 
Web 
Applications
:Remote Execution, 
Middleware



Evolutionary Modifications

4

Corrective
Modifications

Adaptive 
Modifications

Server

Distributed 
Web 
Applications

Modifying
distributed programs
is much harder than
centralized programs...



Client Insourcing Refactoring

5

Server
(netw

ork)

Server Part

Client Part

Centralized
Version

≡
Client 
Insourcing
Refactoring

(Equivalent Variant)
For easy evolutionary 
Changes



Client Insourcing Refactoring

6

Server
(netw

ork)

Server Part

Client Part

Centralized
Version

≡
Modifications

Server Part

Client Part

Client 
Insourcing
Refactoring

(Equivalent Variant) (Changed)



Research Approach

7

▪ New approach that facilitates a large class of 
evolutionary modifications in distributed applications

▪ Novel, domain-specific automated refactoring—Client 
Insourcing—that moves remotely executed 
functionalities to be executed locally, thereby 
creating a semantically equivalent centralized 
version of the distributed application. 

▪ A centralized equivalent of a distributed application 
can serve as a faithful surrogate for various 
maintenance and evolutionary tasks



8

Corrective
Maintenance

SandBoxing

(R
em

ot
e 

In
vo

ca
tio

n) Debugging

Trusted 
Execution

Disconnected
ExecutionReplication

Isolated
Perf. Profiling

“Centralized”

Client

Server

middleware

middleware

Client 
Insourcing (Client)

(Server)

Others

Adaptive
Maintenance

Applicability to Evolutionary Tasks



9

Corrective
Maintenance

SandBoxing

(R
em

ot
e 

In
vo

ca
tio

n) Debugging

Trusted 
Execution

Disconnected
ExecutionReplication

Isolated
Perf. Profiling

Client

Server

middleware

middleware

Client 
Insourcing

Others

Adaptive
Maintenance

Applicability to Evolutionary Tasks

Server
CodeClient

Code
Distributed
App (Buggy) 

Debugging
In Centralized.

Client 
Insourcing

(Fixed)
Server Code

(Fixed)
Client Code

Replay
Fixes

Distributed
App (Fixed) 

(Client)

(Server)



10

Corrective
Maintenance

SandBoxing

(R
em

ot
e 

In
vo

ca
tio

n) Debugging

Trusted 
Execution

Disconnected
ExecutionReplication

Isolated
Perf. Profiling

Client

Server

middleware

middleware

Client 
Insourcing

Others

Adaptive
Maintenance

Applicability to Evolutionary Tasks

Server
CodeClient

Code
Distributed
App (Untrusted) 

Adapting to
Trusted Env.

Client 
Insourcing Redistribution

(Client)

(Server)

T

T Distributed
App (Trusted) 

T



11

Corrective
Maintenance

SandBoxing

(R
em

ot
e 

In
vo

ca
tio

n) Debugging

Trusted 
Execution

Disconnected
ExecutionReplication

Isolated
Perf. ProfilingClient

Server

middleware

middleware

Client 
Insourcing

Others

Adaptive
Maintenance

Applicability to Evolutionary Tasks

Server
CodeClient

Code
Distributed
App (remote only) 

Replication/
Exe. Policy

Client 
Insourcing

(Client)

(Server)

Redistribution
Remote Exec.
(Good Network)

Server
Code

Client Code
Local Exec.
(Faulty Network)

Distributed
App (remote /local exe) 



12

Corrective
Maintenance

SandBoxing

(R
em

ot
e 

In
vo

ca
tio

n) Debugging

Trusted 
Execution

Disconnected
ExecutionReplication

Isolated
Perf. Profiling

“Centralized”

Client

Server

middleware

middleware

Client 
Insourcing (Client)

(Server)

Others

Adaptive
Maintenance

Applicability to Evolutionary Tasks



Progress so far

13

▪ Client Insourcing & Debugging for Full-stack JS Apps
▪ ICWE’19, K.An and E.Tilevich (to be presented tomorrow)
▪ Distributed Apps written by same Language, JavaScript! 

JS
Buggy JS
Full-Stack App

JS
(Remote 
Services)

Fixed JS 
Full-Stack App

JS

GNU
PatchCandoR

(ICWE’19)

Client Insourcing 
& Debugging

JS



Progress so far

14

▪ Trust Execution for Real-time Apps
▪ GPCE’18, Y. Liu, K. An and E. Tilevich

Annotate

LLVM 
Pass

Partition

IR-based 
Analysis & Transformation

Generate IR

RT applications

Normal world
(host)

Secure world
(ta)



Progress so far

15

▪ Source-to-Source Translation with Rule Inference
▪ MobileSoft’18, K. An , N. Meng, and E. Tilevich

porting
iOS

(Swift)
Android
(java)

Ported Cross-platform Apps

Code Differencing with 
language agnostic features

Inference 
Table

New Exam
Java Code

Translated
Swift Code



Remaining work

16

▪ Extend to Multilingual Distributed Apps
▪ Take advantage of Full-Stack JS apps:
▪ Lower maintenance costs (JS everywhere); same tools 

for the backend and frontend parts

JavaScript
Server

(JavaScript:Node.js)

Server
(Java:Spring)

Orig
inal

Adapted

Migration



Remaining Work: Conceptual Challenges

17

▪ Bridging semantic differences between client and 
server languages (i.e., Java vs. JS)

▪ Emulating standard server language libraries and 
frameworks in the insourced code

▪ Ensuring requisite performance characteristics in 
redistributed code

▪ Multi-tier architecture. (i.e. Database)



Evaluation Plan

18

▪ RQ1. Client Insourcing Value, Correctness, and Applicability: 
How much programmer effort does Client Insourcing save?

▪ RQ2. Applicability to Facilitating Evolutionary Modifications: 
What kind of evolutionary tasks can be facilitated by 
Client Insourcing? 

▪ RQ3. Maintaining Semantic Equivalence in the Presence of 
Client Insourcing Enhanced with Language Translation: How 
feasible is it to maintain the business logic of a distributed 
multilingual application by transforming it into a 
centralized monolingual application? 



Conclusions, Future Work, and Q&A

19

▪ I have described my dissertation research, concerned 
with the challenges of evolving distributed apps to 
meet the continuously changing requirements 

▪ My research puts forward a radical notion that a 
centralized equivalent can serve as a faithful proxy 
of a distributed apps for software evolution tasks

▪ As a future work direction, we plan to generalize our 
approach to multilingual and multi-tier (database) 
applications


