
Fast Incremental PageRank
on Dynamic Networks

Zexing Zhan

Wuhan University

What is PageRank?

• PageRank is an algorithm for measuring the

centrality of nodes in a network.

• Each node’s PageRank value depends on

the number and quality of links to that node.

What is the Problem?

The PageRank algorithm works well on small static networks

But real-world networks are:

• dynamically changing

• of large scale.

e. g., according to data released in 2017, Facebook had

1.32 billion daily active users and these users sent tens of

billions of messages every day.

How can we efficiently track the PageRank values of such real-world dynamic networks?

An example of a dynamic network

Relevant state of the art

Currently, there are two main categories of incremental

PageRank algorithms:

• Partition and Aggregation algorithms

• Monte Carlo based algorithms.

Since Partition and Aggregation algorithms cannot avoid cumulative errors,

our work focus on Monte Carlo based algorithms.

How do Partition and Aggregation algorithms work?

Partition
New added edge Nodes whose PR will be recomputed

Nodes whose PR will not be recomputedOriginal Network

Smaller network with super node S

Merge white nodes to a super node

Super node

Theoretically cannot avoid cumulative errors

How do Monte Carlo based algorithms work?

Approximating PageRank:

• First simulating exactly R random walks with reset probability 𝜖

starting from each node

• Then counting the number of times those random walks visits each

node 𝑢, denoted as 𝑉𝑢

• Finally approximating the PageRank value of each node 𝑢 by

where n is the number of nodes in a network.

How do Monte Carlo based algorithms work?

Updating PageRank:

• By storing all random walk segments, we can update PageRank

without re-simulating all 𝑛𝑅 random walks.

• When an edge 𝑒(𝑢, 𝑤) is deleted or inserted, to update PageRank

is to adjust those random walk segments accordingly.

Core problem: how many random walk segments are really affected，
thus need to be adjusted?

Motivation and goals

Motivation:

Previous Monte Carlo based algorithms works only in a special case:

• No nodes are added or deleted

• No random walks revisit a same node (i.e. no loop in a network)

which however is not the truth for real-world networks.

Our goals:

To develop an efficient Monte Carlo based PageRank tracking algorithm for

real-world networks.

Difficulties

Loops in real-world networks make it difficult:

• (main) to determine how many random

walk segments are affected?

• to properly adjust an affected random walk

segments

• to manage all 𝑛𝑅 random walk segments

efficiently.
A random walk visits node 1 twice

A loop

Key contribution: The Revisit Probability Model

For real-world networks, the main difficulty is to determine how many

random walk segments are really affected by the edge modified.

To solve this issue, we proposed the revisit probability model.

Key contribution: The Revisit Probability Model

For a graph 𝐺(𝑡), we define the revisit probability of an edge 𝑒(𝑢, 𝑣) and

a node 𝑢 as follows:

• 𝒓𝒖𝒗: The probability that a random walk passing through edge

𝑒(𝑢, 𝑣) revisits node 𝑢.

• 𝑹𝒖: The expectation of its out edges’ 𝑟𝑢𝑣：

Key contribution: The Revisit Probability Model

An example of the revisit probability

graph G(t)

the probability of all paths starting from 𝑒(1, 2) in 𝐺(𝑡) with 𝜖 = 0.15

𝑟12 𝑡 = 0.36125

It is complicated to compute it directly
quite a high probability

𝑅_1(𝑡) = 𝑟_12(𝑡) ∗ (1 − 𝜖) = 0.36215 ∗ 0.85

Key contribution: The Revisit Probability Model

Denote 𝑊𝑢(𝑡) as the number of random walk segments visits node 𝑢,

𝑉𝑢(𝑡) as the total visit times. They can be expressed by:

So, for large and complex networks, we can estimate 𝑅𝑢(𝑡) as

Key contribution: The Revisit Probability Model

These two observations make it possible for accurate PageRank tracking

Key contribution: The Revisit Probability Model

Denote 𝑀𝑡+1 as the actual number of random walk segments that

need to be adjusted when adding an edge 𝑒(𝑢, 𝑤) to graph 𝐺(𝑡) at time

t+1。Through our model we finally get

Result used by previous method is simply :

If no random walk revisits a node,

then 𝑊𝑢 𝑡 = 𝑉𝑢(𝑡) and 𝑅𝑢 𝑡 =0,

these two equations are the same.

Datasets

5 real-world dynamic networks with time-stamps, obtained from

http://snap.stanford.edu/data/ and http://konect.cc/networks/, were

used in our experiments

Experimental results: Accuracy

PageRank tracking accuracy of this work on 5 real-world networks

Experimental results: Accuracy

Accuracy comparison of the algorithms on network email-Eu-core

Experimental results: Efficiency

Average update time (ms) for inserting or deleting a single edge.

The proposed algorithm is about

1.3 times faster than IMCPR2 algorithm and

30 times faster than BahmaniPR algorithm.

– indicates that algorithm did not finish within 100000s

Experimental results: Scalability

The average update time is only inversely proportional to the average out degree.

That means, the proposed algorithm is scalable for large networks.

Why is our approach better?

Accuracy:

• Our algorithm is developed under a more general case (real-world

networks with loops)

• Our algorithm properly deals with all added or removed node in a

dynamic network

Efficiency

• Our algorithm saves only one copy of each random walk segments in

a hash-table

• Our algorithm adjusts less random walks to update PageRank values

In the future

• Introduce this algorithm to some application aspects, such as event

detection on dynamic networks and so on.

• Improve the proposed method to a distributed algorithm, to make it more

efficient.

• Migrate the revisit probability model we proposed to some similar research

fields, like personalized PageRank and random walk betweenness centrality

Thank You

Collaborators:

Ruimin Hu, Xiyue Gao and Nian Huai

Funding:

National Natural Science Foundation of China

National Key R&D Program of China

