

Modeling Heterogeneous Influences for Point-of-Interest Recommendation in Location-Based Social Networks

Qing Guo, Zhu Sun, Jie Zhang, and Yin-Leng Theng

Location-based Social Network

POI Recommendation

- Motivation
 - Heterogeneous information
 - Various influence factors

Problem Statement

- Users' check-in decision is influenced by various factors. Although many POI recommender systems explore different influential factors to improve POI recommendation, they only partly exploit some of the factors. Therefore, there is a lack of research that attempt to incorporate these influential factors in a unified way.
- Two challenges
 - Different factor influence users' check-in decision in different way.
 - Information of different factors is represented in different way.

- Research Objectives
 - Identify appropriate information of content factor to model users' preference more precisely.
 - Develop a knowledge graph to integrate various factors in a unified way.
 - Develop a latent factor model to generate POI recommendations with considering various influence factors as well as their personalized importance for each user and POI.

Overview

Dataset Description

- Yelp dataset is utilized for experimental purpose.
- This study focuses on restaurants since aspects are domain specific.
- Phoenix, Las Vegas and Charlotte are chosen for this study.
- Aspect: "I like the *service* and *food* in this *Sushi* bar".

	Cities	CH	PH	LV
Dataset	Users POIs Aspects	$\begin{array}{c} 1,106 \\ 2,724 \\ 1,355 \end{array}$	$2,148 \\ 2,603 \\ 1,952 \\ 31,9$	$\begin{array}{c} 4,794 \\ 4,274 \\ 4,180 \\ 150,000 \end{array}$
	Reviews Categories	33,966 148	61,596 155	150,080 175
AGS-IG	User-POI User-Aspect	25,847 141,691	46,206 284,946	$\frac{113,239}{784,550}$
	User-User POI-Aspect POI-POI	5,803 130,364 79,530	23,766 210,953 112,248	$ \begin{array}{r} 46,407\\ 549,527\\ 405,310 \end{array} $
	Aspect-Aspect Density	$\frac{915,981}{14.8\%}$	1,898,326 11.5%	$\frac{87,257,531}{12.1\%}$

Intuitions for AGSG Construction

- Aspect-aware Geo-Social Influence Graph (AGSG) is constructed based on the following intuitions:
 - Intuition 1 (Geographical factor): users prefer to visit place that are near to their usual activity areas (Ye et al., 2011; Yuan et al, 2014).
 - Intuition 2 (Social factor): friends share more interest that non-friends (Yang et al., 2013; Ye et al., 2010).
 - Intuition 3 (Content factor): a user prefer a POI because some aspects of this place attracts her, e.g., food or atmosphere (He et al., 2015).
 - Intuition 4 (Content factor): if user u_i express concerns about aspect a_p, u_i may also concern about aspect a_q if a_q is semantically similar to a_p.

Meta Path Selection

- Meta Path Selection
 - A meta path is a sequence of relations connecting different types of nodes (Sun et al., 2011), for example

 $U \xrightarrow{mentioned} A \xrightarrow{isMentionedBy} U$

• Different recommendation strategies can be modelled in a generic way.

Meta Path	Recommendation Strategy	Influence factor			
ULU	User-based CF	User preference			
UAU	User-based CF	Content factor			
UU	User-based CF	Social factor			
ULALU	User-based CF	User preference + Content factor			
LUL	Item-based CF	Location preference			
LL	Item-based CF	Geographical factor			
LAL	Item-based CF	Content factor			

• Neighbor discovery by meta-path based random walk

R01&2 RO3 Heterogeneous graph construction Neighbor Discovery Incorporating meta paths into MF Recommend Top-N POIs

• A unified latent factor model approach AGS-MF (Aspect-aware Geo-Social Influence Matrix Factorization) is proposed by extending MF with the integration of the selected meta paths:

Aspect-aware Geo-Social

Matrix Factorization

$$\begin{split} \mathcal{L} &= \frac{1}{2} \sum_{i} I_{i,j} (r_{i,j} - g(\mathcal{U}_{i} \mathcal{V}_{j}^{\top}))^{2} + \frac{\lambda_{u}}{2} ||\mathcal{U}||_{F}^{2} + \frac{\lambda_{l}}{2} ||\mathcal{V}||_{F}^{2} \\ &+ \frac{\alpha_{u}}{2} \sum_{p \in \mathcal{M}_{u}} \sum_{i} ||\Omega_{i,p} (\mathcal{U}_{i} - \sum_{u_{k} \in \mathcal{N}_{p}(u_{i})} s_{i,k} \mathcal{U}_{k})||_{F}^{2} \\ &+ \frac{\alpha_{l}}{2} \sum_{p \in \mathcal{M}_{l}} \sum_{j} ||\Theta_{j,p} (\mathcal{V}_{j} - \sum_{l_{q} \in \mathcal{N}_{p}(l_{j})} s_{j,q} \mathcal{V}_{q})||_{F}^{2} \\ &+ \frac{\lambda_{\Omega}}{2} ||\Omega||_{F}^{2} + \frac{\lambda_{\Theta}}{2} ||\Theta||_{F}^{2} \\ &\text{The importance of a meta} \\ &\text{path for a user or item} \end{split}$$

Experiments

- Aspect Extraction
 - Toolkit provided by Zhang et al. is used in this study.
 - Aspect-opinion with sentiment polarity, e.g., (food, delicious, positive) is generated.
- Cross Validation
 - Users and POIs with less than 10 reviews are filtered out.
 - 5-fold cross validation is adopted for learning and testing.
- Evaluation metric
 - Precision@N
 - Recall@N

Results of Variants of AGS-MF

• Variants of AGSRec

• Effect of meta path length

• Comparison result

City	Metric	UCF	ICF	MF	SRMF	LFBCA	${ m Geo}{ m MF}$	GeoSoCa	TriRank	AGSRec	AGS-MF	$\operatorname{Improve}(\%)$
Charlotte	Pre@5 Pre@10 Pre@20 Rec@5 Rec@10 Rec@20 MAP@5 MAP@10 MAP@20	$\begin{array}{c} 1 \cdot 483 \\ 1 \cdot 456 \\ 1 \cdot 433 \\ 1 \cdot 117 \\ 2 \cdot 229 \\ 4 \cdot 137 \\ 3 \cdot 086 \\ 3 \cdot 788 \\ 4 \cdot 255 \end{array}$	0.976 0.922 0.945 0.977 1.940 4.143 2.039 2.566 3.061	1.817 1.798 1.581 1.485 2.805 4.849 3.659 4.369 4.751	$2 \cdot 586$ $2 \cdot 134$ $1 \cdot 917$ $1 \cdot 875$ $3 \cdot 070$ $5 \cdot 833$ $5 \cdot 328$ $5 \cdot 922$ $6 \cdot 281$	2.007 1.881 1.939 1.964 3.669 7.562 4.188 4.939 5.589	2.901 2.562 2.372 2.509 4.557 8.194 5.702 6.807 7.528	2.586 2.134 1.917 1.875 3.070 5.833 5.328 5.922 6.281	$2 \cdot 821$ $2 \cdot 532$ $2 \cdot 360$ $2 \cdot 548$ $4 \cdot 407$ $8 \cdot 034$ $5 \cdot 586$ $6 \cdot 747$ $7 \cdot 203$	3.018* 2.633* 2.474 2.625* 4.760* 8.558 6.033* 6.949* 7.946*	$\begin{array}{c} \textbf{3.776}\\ \textbf{3.186}\\ \textbf{2.411*}\\ \textbf{3.103}\\ \textbf{5.250}\\ \textbf{8.092*}\\ \textbf{7.323}\\ \textbf{8.345}\\ \textbf{8.441} \end{array}$	$\begin{array}{c} 25 \cdot 12 \\ 21 \cdot 00 \\ -2 \cdot 54 \\ 18 \cdot 21 \\ 9 \cdot 87 \\ -9 \cdot 02 \\ 21 \cdot 28 \\ 20 \cdot 09 \\ 6 \cdot 25 \end{array}$
Phoenix	Pre@5 Pre@10 Pre@20 Rec@5 Rec@10 Rec@20 MAP@5 MAP@10 MAP@20	$\begin{array}{c} 0.894 \\ 0.987 \\ 1.034 \\ 0.693 \\ 1.604 \\ 3.370 \\ 2.147 \\ 2.685 \\ 3.136 \end{array}$	0.708 0.796 0.784 0.771 1.742 3.489 1.562 2.094 2.457	1.248 1.173 1.101 1.028 1.880 3.603 2.920 3.479 3.895	$\begin{array}{c} 1\cdot 322 \\ 1\cdot 080 \\ 1\cdot 022 \\ 1\cdot 022 \\ 1\cdot 628 \\ 3\cdot 092 \\ 3\cdot 768 \\ 4\cdot 098 \\ 4\cdot 477 \end{array}$	1.467 1.174 1.014 1.536 3.592* 6.130 3.919 4.760 5.217	1.905 1.889 1.801 1.723 3.520 5.850 3.842 4.859 5.742	$\begin{array}{c} 1.623 \\ 1.588 \\ 1.500 \\ 1.600 \\ 2.901 \\ 5.700 \\ 3.498 \\ 4.013 \\ 5.056 \end{array}$	$\begin{array}{c} 1.890 \\ 1.830 \\ 1.734 \\ 1.751 \\ 3.300 \\ 6.126 \\ 3.771 \\ 4.690 \\ 5.304 \end{array}$	$2 \cdot 060^*$ $1 \cdot 939^*$ 1.869 $1 \cdot 821^*$ $3 \cdot 531$ 6.502 $3 \cdot 921^*$ $4 \cdot 972^*$ $5 \cdot 823^*$	$\begin{array}{c} \textbf{2.196} \\ \textbf{2.154} \\ \textbf{1.852*} \\ \textbf{1.932} \\ \textbf{3.845} \\ \textbf{6.163*} \\ \textbf{4.464} \\ \textbf{5.416} \\ \textbf{5.864} \end{array}$	$\begin{array}{c} 6{\cdot}60\\ 11{\cdot}09\\ -0{\cdot}91\\ 6{\cdot}10\\ 7{\cdot}04\\ -5{\cdot}21\\ 13{\cdot}85\\ 8{\cdot}93\\ 0{\cdot}70\end{array}$
Las Vegas	Pre@5 Pre@10 Pre@20 Rec@5 Rec@10 Rec@20 MAP@5 MAP@10 MAP@20	$\begin{array}{c} 0.626\\ 0.542\\ 0.485\\ 0.552\\ 0.939\\ 1.647\\ 1.340\\ 1.612\\ 1.819\end{array}$	$\begin{array}{c} 0.588\\ 0.501\\ 0.433\\ 0.508\\ 0.882\\ 1.610\\ 1.310\\ 1.586\\ 1.613\end{array}$	$\begin{array}{c} 0.948\\ 0.878\\ 0.754\\ 0.865\\ 1.478\\ 2.436\\ 2.191\\ 2.530\\ 2.251\end{array}$	$\begin{array}{c} 0.960\\ 0.859\\ 0.825\\ 0.627\\ 1.182\\ 2.413\\ 1.714\\ 2.074\\ 2.393\end{array}$	$ \begin{array}{r} 1 \cdot 120 \\ 1 \cdot 060 \\ 0 \cdot 975 \\ 0 \cdot 672 \\ 1 \cdot 406 \\ 2 \cdot 823 \\ 2 \cdot 222 \\ 2 \cdot 685 \\ 3 \cdot 063 \\ \end{array} $	1.509 1.291 1.406 1.461 2.565 5.345 3.428 3.860 4.282	$ \begin{array}{r} 1 \cdot 470 \\ 1 \cdot 280 \\ 1 \cdot 370 \\ 1 \cdot 420 \\ 2 \cdot 260 \\ 5 \cdot 180 \\ 3 \cdot 250 \\ 3 \cdot 820 \\ 4 \cdot 100 \\ \end{array} $	$ \begin{array}{r} 1.589\\ 1.331\\ 1.416\\ 1.431\\ 2.459\\ 5.345\\ 3.306\\ 3.882\\ 4.349\end{array} $	$\begin{array}{r} 1.653^{*} \\ 1.371^{*} \\ 1.455^{*} \\ 1.474^{*} \\ 2.557^{*} \\ \textbf{5.502} \\ 3.571^{*} \\ 4.154^{*} \\ 4.883^{*} \end{array}$	$\begin{array}{c} 2.069\\ 1.821\\ 1.495\\ 1.806\\ 3.132\\ 5.398^*\\ 4.644\\ 5.385\\ 5.580\end{array}$	$\begin{array}{c} 25 \cdot 17 \\ 32 \cdot 82 \\ 2 \cdot 75 \\ 22 \cdot 52 \\ 22 \cdot 49 \\ -1 \cdot 89 \\ 30 \cdot 05 \\ 29 \cdot 63 \\ 14 \cdot 27 \end{array}$

Contribution

- Propose a novel heterogeneous graph model to incorporate various influence factors in a unified way.
- Propose a novel latent factor model that exploits semantics of the graph and can learn personalized importance of each influential factor for each user and POI.

Guo Qing qguo006@e.ntu.edu.sg

Geographical Factor

- Users' check-in behavior is geographically constrained.
- Representative methods that model geographical factor
 - Power law distribution model (Ye et al., 2011; Yuan et al., 2014)
 - Gaussian distribution (Cho et al., 2010; Cheng et al., 2012)
 - Kernel density estimation (Zhang et al., 2013)

Social Factor

- Friends in LBSNs share more common interests than non-friends.
- User-based Collaborative Filtering Framework.
 - Friend-based CF (Ye et al., 2010; Li et al., 2016)

$$r_{ij} = \frac{\sum_{u_k \in F_i} r_{kj} \cdot \omega_{ik}}{\sum_{u_k \in F_i} r_{kj}}$$

- Random Walk (Noulas et al., 2012; Wang et al., 2013)
- Matrix Factorization Framework
 - The latent features of friends are similar in latent space (Cheng et al., 2011; Yang et al., 2013)

Content Factor

- Inferring users' preference for categories
 - Categories provides information about the function of POIs.
 - Bao et al. (2012) exploit the hierarchy of categories.
- Inferring users' preference for aspects
 - Aspects can be used for modeling users' preference in a finer granularity (Yang et al., 2013; He et al., 2015).
- Geo-Topic model
 - A region is associated with certain topics which is hidden in reviews, categories and tags (Yuan et al., 2013; Yin et al., 2013; Zhao et al., 2015).
 - Geographical + Content

Good place in center New York, I went there last Sunday night and had great spaghetti with reasonable price. But I had a very long waiting time , almost one hour just for appetizer !!!

