
On Twitter Bots Behaving Badly:
Empirical Study of Code Patterns
on GitHub

Andrea
Millimaggi

Florian
Daniel

F. Daniel, C. Cappiello, B. Benatallah.  
Bots Acting Like Humans:
Understanding and Preventing
Harm. IEEE Internet Computing
23(2), 2019, Pages 40-49.

Harm in human-bot interactions

Psychological harm
Someone’s psychological health or well-being
get endangered or injured

Legal harm
Someone becomes subject to law enforcement
or prosecution

Economic harm
Someone incurs a monetary cost or loses time

Social harm
Someone’s image or standing in a community
gets affected negatively

Democratic harm
Democratic rules and principles are undermined

allow them tomimic interactions by regular users

with the user interface of the platform.

On the left-hand side of Figure 1, we provide a

taxonomy of the actions we identified for the

selected examples. Actions are grouped into chat,

posting, endorsement, and participation actions

and are platform-specific (e.g., users chat on Mes-

senger, while they write posts on Facebook). It is

evident that none of these actions is bot-specific

and that they can as well be performed by

humans. It is also clear that these types of actions

per se do not yet represent any abuse; they rather

explain how online conversations happen. Then,

they can be used for good or bad.

Inappropriateness
As for the condition of inappropriateness, it is

harder to provide a taxonomy of what makes an

action inappropriate or not. Some types of abuse

are actually subject to legal prosecution and thus

formalized in laws, while others do not. These lat-

ter are breaches of moral, ethical or social norms

that, although not prosecutable by law, may still

cause harm. For example, threatening someone

may be illegal while spreading misinformation

andmanipulating public opinion, alas, is not.

The regulation we found that most clearly tells

which kinds of conditions must hold for an action

to turn into an abuse is reported in the side-box,

i.e., New Zealand’s Harmful Digital Communica-

tions Act of 2015. Section 6 of the Act lists ten

communication principles that, if violated, may

result into an abuse. As for the types of harm, we

systematically mapped the selected examples to

the ten principles: In the top-right of Figure 1,

we report the six principles for which we found

concrete examples of violations, including the

number of the principle; fortunately, we were not

able to find any cases of harassment (principle 5),

publication of matter that was published in

breach of confidence (7), encouragement to send

messages intended to cause harm to others (8),

or incitements to commit suicide (9).

For the other six principles, we found com-

pelling examples: the eCommerce and Custom-

erSvc bots envisioned aim to steel credit card

data, that is, they disclose sensitive facts (1) that

a user reveals inside a confidential chat room.

AASlang, MSTay and Oreo are examples of deni-

gration (10), respectively, in the form of discrimi-

nation, hate speech, and answering tweets with

offending account names. The Puma incident

Figure 1. Actions by bots and identified types of abuse by example; numbers in boxes reference the violated

communication principle (New Zealand’s Harmful Digital Communications Act of 2015, see side-box).

Cognitive Services and Intelligent Chatbots

44 IEEE Internet Computing

Harm = consequence of an action and an abuse

© F. Daniel, C. Cappiello, B. Benatallah. Bots Acting Like Humans: Understanding and Preventing Harm.
IEEE Internet Computing 23(2), 2019, Pages 40-49.

Literature on bots
Bot development (frameworks, APIs, etc.)
Bot detection from externally visible communications

 (goal of this paper)
Identify how harm is caused by bots

Understand likely underlying intentions
>> Abuse-oriented classification of bot code repositories  
 published on GitHub

Problem

Platform policies and permissions

Before going into the details…

Bots are not negative in general!

All platforms provide developers with programmable interfaces

Typically allow programmatic access to all functionalities

Users of the APIs must authenticate with the platforms

Almost all platforms impose some kind of limitation

4 A. Millimaggi and F. Daniel

Messenger, LinkedIn) are equipped with developer-oriented software develop-

ment kits (SDKs), even in multiple programming languages. Others (Twitter,
Instagram) provide more basic programming libraries.

As for the usage policies, almost all platforms impose some kind of limitation.
For instance, “200 calls per hour per user” per app on Facebook. Twitter uses
message-level limits, e.g., to prevent aggressive following practices. Only Messen-
ger does not explicitly limit usage and instead even states “you can safely send
250 requests per second.” Some platforms impose specific requirements, such as
“keep your app’s negative feedback below our threshold” (Facebook) or “auto-
mated bots must respond to any and all input from the user” (Messenger). An
explicit code review is needed for Facebook, Instagram and Messenger. Automa-

tion is generally allowed, although commonly limited to actions the target users
have explicitly granted permission to; Twitter, for instance, disallows “sending
messages in an aggressive or discriminate manner.” Most policies even include
content restrictions like “don’t create fake accounts” (Facebook) or “don’t send
tweets containing links that are misleading.” All surveyed platforms explicitly
state that they may suspend accounts or apps if they violate their policies.

3 Dataset: Twitter Bot Code Repositories

This paper follows a Data Science methodology [9] to extract new knowledge
from data. We thus describe here the dataset underlying our study and provide
a first analysis of how developers themselves describe their own bot projects.

3.1 Data sources and retrieval

Fig. 1: Distribution of GitHub search re-
sults by searched keywords (includes all
programming languages).

In this paper, we specifically focus
on Twitter (https://twitter.com) and
bots written in Python. The former
is an opportunistic choice, shared by
most literature on the topic (see Sec-
tion 5 for related works) and is mo-
tivated by the openness of Twitter
compared to other platforms. The lat-
ter stems from the observation that
Python is the most used language
for Twitter bot implementations in
GitHub (35.4% of the repositories we
analyzed for Twitter use it). GitHub
(https://github.com) is the code hosting service we use for data collection; the
choice is again driven by adoption: with about 31M users and 100M projects
(or “repositories”), GitHub is today’s most used code hosting service (https://
www.alexa.com/topsites/category/Computers/Open Source/Project Hosting).

In order to identify candidate repositories for our analysis, we used GitHub’s
search API with a combination of two terms, “Twitter” and any among “bot,”

Dataset

On Twitter Bots Behaving Badly 5

“automation,” “auto” and “automated.” Figure 1 shows the distribution of re-
sults obtained by the search considering still all programming languages. As the
result of the query “Twitter bot” shows, the term “bot” is highly used for Twitter
(we performed similar searches for all platforms mentioned in Section 2.2, and the
results distributions do vary from platform to platform). The search represents
the state of GitHub as of October 29, 2018, the date the search was performed.
For each identified repository, we collected all code files included in the reposi-
tory as well as a subset of the respective project metadata: URL, programming
language, description (a short line of text), and fork/subscriber/watcher counts.

3.2 Preliminary analysis

As the purpose of this paper is to understand how bots implement their in-
teractions with humans, the analysis necessarily requires a manual inspection.
This, in turn, requires a careful selection of repositories, in order to keep the
size of the dataset manageable and the selected repositories meaningful. Before
choosing which repositories to keep and which not, we thus run a simple analysis
based on the textual descriptions of the projects in order to obtain a preliminary
understanding of which actions the repositories implement.

The analysis followed a top-down approach: We took as starting point the
actions identified in our previous work [6], i.e., talk with user, redirect user, write
post, comment post, forward post, like message, follow user, and create user, and
matched the retrieved repositories with these action labels. In order to match
repositories with action labels, we manually inspected the descriptions of the
first 100 items as returned in order of relevance by the GitHub search API and
extracted textual keywords from the descriptions. Examples of keywords are:
send messages, reply to messages, chat, post, tweet, tag, poke, and similar. Then
we mapped all keywords to respective action labels, such as {send messages,

reply to messages, read messages, direct message, chat} ! talk.
The mapping exercise produced evidence for the existence in the dataset

of all the actions above, plus the addition of 3 new action labels: some projects
explicitly claimed to implement a spam functionality; others implemented a poke

user and a recommend user functionality.

Fig. 2: Labels of repositories.

According to [6], spamming is actually an
abuse of the actions write post or forward post,
but we kept it as the descriptions explicitly
use the keyword. Poking and recommending
users are not functionalities of Twitter: the
former is a specific action of Facebook and the
latter of LinkedIn, but they appeared anyway
in the classification. Very likely the two ac-
tions refer to bots that provide cross-platform
functionalities, starting from Twitter, which
are however out of the scope of this paper.

The goal of this inspection was to enable
the automatic labeling of the repositories with

Focus on Twitter
Search by keywords
Collection of code files +
metadata

Preliminary analysis
of actions implemented
in repositories

Final dataset

= 60 GitHub Twitter bot repositories programmed in Python
average number of files per repository: 3
average number of lines of code: 192
average size of repository: 21.39 KBytes

Selection criteria:
Programming language = Python
Exclusion of repositories that are out of scope
5 best repositories for each of the most used actions
5 random repositories from the rest
10 best repositories we could not classify
10 random repositories from the rest

Starting point

Methodology

Find code that
interacts with

users

Systematic, manual code review!

Categorize
actions

Identify
implementation

patterns +
examples

8 A. Millimaggi and F. Daniel

Table 1: Synthesis of online communication actions implemented by Twitter bots

Action Description

Search Search users or tweets using names, keywords, hashtags, ids or similar or by nav-
igating social network relationships (e.g., friends of friends, followers of friends,
friends of followers, followers of followers)

Follow Follow users to establish social relationships

Like Like tweets by other users to endorse them

Tweet Post a new tweet to communicate content

Mention Mention other users in tweets using @ to attract attention

Retweet Re-post tweets by other users to endorse them

Talk to Send direct messages to users to converse with them

Pause Pause the conversation flow of the bot

Store Store content retrieved from the social network for later use

4.3 Code patterns: how bots implement their actions

Focusing on the code fragments considered relevant as communication actions, a
second iteration of the code review aimed at synthesizing all examples of action
implementations into a taxonomy of recurrent code patterns that explains how
actions are implemented in practice. For a code fragment to qualify as a pattern,
two requirements must be met: (i) it must be possible to abstract the fragment
and to associate it to at least one action, and (ii) it must recur at least two
times in the dataset. A pattern thus represents the intended function of a set of
instructions, not their syntactic manifestation in the code.

Even accounting for di↵erent names of identifiers in the code, without this
type of semantic abstraction it would be necessary to perform a purely syntactic
similarity search. However, given the diversity of the repositories and developers
that characterize our dataset, only unlikely it would have been possible to spot
two fragments that are syntactically equivalent.

For instance, it is possible to interact with the Twitter API using direct,
low-level HTTP requests, or one can use a dedicated API wrapper library,
such as (in order of use in our dataset): tweepy (http://www.tweepy.org), Twit-
ter libraries (https://bit.ly/2Gg3WJC), TwitterAPI (https://bit.ly/2UwSZri),
Twython (https://bit.ly/2aOjCnT), or own, proprietary libraries. Similarly, there
are di↵erent options for the automatic generation of text for tweets or in-
stant messages, such as nltk (https://www.nltk.org/) or seq2seq (https://bit.
ly/2Ry2FQt). Patterns abstract away from these implementation choices and
aim to capture the essence of what the developer wanted to implement.

The result of this analysis is reported in Table 2, which names and summa-
rizes the identified patterns. These 31 patterns concisely represent the di↵erent
interpretations of the 9 actions as implemented in the approximately 140 code
examples collected and analyzed.

Example 1. Let us inspect the following two lines of code to understand the logic
of the proposed patterns:

Actions for participationResults

Synthesis of online communication actions implemented by Twitter bots

On Twitter Bots Behaving Badly 9

Table 2: Taxonomy of code patterns used for the implementation of actions.

Action Pattern Description

Search User search Search user account by name, keyword, id or similar

Tweet search Search tweets by keyword or hashtag

Trend search Search trending topics or hashtags by location

Follow Indiscriminate follow Follow users without checking suitability of users, user-
names or content shared

Whitelist-based follow Follow only users whose attributes or tweets match some
element of a given whitelist

Blacklist-based follow Don’t follow users whose attributes or tweets satisfy one
or more criteria specified in a blacklist

Phantom follow Follow users and unfollow them as soon as a given con-
dition is satisfied, e.g, a limit of friends reached or being
followed back

Like Indiscriminate like Like tweets without checking suitability of content, user
or username

Whitelist-based like Like only tweets by users whose attributes or content
match some element of a whitelist

Blacklist-based like Don’t like tweets whose attributes or users match an el-
ement of a blacklist

Mass like Aggressively like tweets of given users

Tweet Fixed-content tweet The content of the tweet is taken from a fixed, static
collection of predefined messages

AI-generated tweet The text of the tweet is automatically generated using
AI/NLP tools

Trusted source tweet The content of the tweet is taken from a source that can
be considered trusted

Tweet with opt-in Tweets are sent only to people who ask to interact with
the bot, sending it a message or mentioning it in a tweet

Mention Indiscriminate mention Mention other users without checking suitability of user-
name or content shared

Targeted mention Classify users on the basis of their tweets and mention
them in targeted messages

Whitelist-based mention Mention only users whose attributes match some element
of a whitelist

Blacklist-based mention Don’t mention users whose attributes match elements of
a blacklist

Retweet Indiscriminate retweet Retweet tweets without checking content or username for
suitability

Whitelist-based retweet Retweet content only from users whose attributes match
some element of a whitelist

Blacklist-based retweet Don’t retweet tweets whose attributes or users satisfy
some condition expressed in a blacklist

Mass retweet Aggressively retweet multiple tweets by selected users

Talk to Indiscriminate talk Send direct, instant messages to users without checking
their suitability

Talk with opt-in Reply only to messages sent to the bot (passive behavior)

AI-generated talk Generate messages using AI/NLP tools

Fixed-content talk Take message from a fixed list of predefined phrases

Targeted talk Classify users based on their tweets or attributes and
target message accordingly

Pause Mimic human Use pauses in instant messages to deliver human-like con-
versation experience to other humans

Satisfy API constraints Use as short as possible pauses just to avoid being
blocked by API usage limitations

Store Store persistently Store retrieved content or user information for later use

Code patterns of action implementationsResults

Search
Follow

Like

Tweet

Mention

Retweet

Talk to

Pause
Store

On Twitter Bots Behaving Badly 9

Table 2: Taxonomy of code patterns used for the implementation of actions.

Action Pattern Description

Search User search Search user account by name, keyword, id or similar

Tweet search Search tweets by keyword or hashtag

Trend search Search trending topics or hashtags by location

Follow Indiscriminate follow Follow users without checking suitability of users, user-
names or content shared

Whitelist-based follow Follow only users whose attributes or tweets match some
element of a given whitelist

Blacklist-based follow Don’t follow users whose attributes or tweets satisfy one
or more criteria specified in a blacklist

Phantom follow Follow users and unfollow them as soon as a given con-
dition is satisfied, e.g, a limit of friends reached or being
followed back

Like Indiscriminate like Like tweets without checking suitability of content, user
or username

Whitelist-based like Like only tweets by users whose attributes or content
match some element of a whitelist

Blacklist-based like Don’t like tweets whose attributes or users match an el-
ement of a blacklist

Mass like Aggressively like tweets of given users

Tweet Fixed-content tweet The content of the tweet is taken from a fixed, static
collection of predefined messages

AI-generated tweet The text of the tweet is automatically generated using
AI/NLP tools

Trusted source tweet The content of the tweet is taken from a source that can
be considered trusted

Tweet with opt-in Tweets are sent only to people who ask to interact with
the bot, sending it a message or mentioning it in a tweet

Mention Indiscriminate mention Mention other users without checking suitability of user-
name or content shared

Targeted mention Classify users on the basis of their tweets and mention
them in targeted messages

Whitelist-based mention Mention only users whose attributes match some element
of a whitelist

Blacklist-based mention Don’t mention users whose attributes match elements of
a blacklist

Retweet Indiscriminate retweet Retweet tweets without checking content or username for
suitability

Whitelist-based retweet Retweet content only from users whose attributes match
some element of a whitelist

Blacklist-based retweet Don’t retweet tweets whose attributes or users satisfy
some condition expressed in a blacklist

Mass retweet Aggressively retweet multiple tweets by selected users

Talk to Indiscriminate talk Send direct, instant messages to users without checking
their suitability

Talk with opt-in Reply only to messages sent to the bot (passive behavior)

AI-generated talk Generate messages using AI/NLP tools

Fixed-content talk Take message from a fixed list of predefined phrases

Targeted talk Classify users based on their tweets or attributes and
target message accordingly

Pause Mimic human Use pauses in instant messages to deliver human-like con-
versation experience to other humans

Satisfy API constraints Use as short as possible pauses just to avoid being
blocked by API usage limitations

Store Store persistently Store retrieved content or user information for later use

10 A. Millimaggi and F. Daniel

for tweet in tweepy.Cursor(api.search, q=QUERY).items():
tweet.user.follow()

The code uses the tweepy library to interact with Twitter and implements
two actions: search and follow. The search action is reified by the search user

pattern (which exact feature is used for the search is unknown as the content
of QUERY is not visible). The follow action is reified by the indiscriminate follow

pattern, as line 2 follows all users without applying any filter on the users. /

Example 2. The following three lines of code show a concrete implementation of
the blacklist-based mention pattern:

def mentions(count, max_seconds_ago, id_blacklist) :
return [mention for mention in api.mentions_timeline(count=count)

if not mention.id in id_blacklist]

The code defines a function that returns all the ids of the users that have
mentioned the bot in prior tweets (expressing some form of interest in the bot)
and whose ids are not contained in the list of banned ids id blacklist. /

Incidentally, these examples are also representative of two recurrent types of
patterns across multiple actions: for all those actions that somehow endorse a
user or a tweet (follow, like, mention, retweet), the analysis identified patterns
that do so indiscriminately or that do so by first checking if the involved user is
blacklisted or not. Independently of these examples, the analysis also identified
other recurrent types of patterns for these actions that endorse users only if they
are whitelisted. Other notable patterns implement massively repeated actions like
mass like and mass retweet, which aggressively endorse content by given users, or
specially targeted actions like targeted mention and targeted talk, which instead
carefully select the users to interact with (e.g., suicide candidates) and send
them particularly tailored messages (e.g., to point to help and prevent suicide).

4.4 E↵ects of actions: assessing potential harmfulness

Considering again the indiscriminate, blacklist and whitelist patterns, it is im-
portant to acknowledge that they implement di↵erent levels of sensibility of risk
as perceived by the developer. Indiscriminately retweeting content expresses ei-
ther a high level of trust in the users who produce the retweeted content, or it
expresses a lack of awareness of the risks that retweeting for example o↵ensive,
denigrating or obscene content may have on the reputation of the bot owner.
Either way, it becomes evident that each pattern may have a di↵erent e↵ect or
impact on the users a bot interacts with.

In our prior work [6], we identified 12 major types of abuses bots have com-
mitted in the past (see the top-right list in Figure 3) and that have produced
harm (remember Section 2.1). The first half of these abuses are legally prose-
cutable in most democratic countries (see, for example, New Zealands Harmful
Digital Communications Act of 2015 [14]). The typical question that remains
unanswered when harm occurs is why the respective abuse was committed.

10 A. Millimaggi and F. Daniel

for tweet in tweepy.Cursor(api.search, q=QUERY).items():
tweet.user.follow()

The code uses the tweepy library to interact with Twitter and implements
two actions: search and follow. The search action is reified by the search user

pattern (which exact feature is used for the search is unknown as the content
of QUERY is not visible). The follow action is reified by the indiscriminate follow

pattern, as line 2 follows all users without applying any filter on the users. /

Example 2. The following three lines of code show a concrete implementation of
the blacklist-based mention pattern:

def mentions(count, max_seconds_ago, id_blacklist) :
return [mention for mention in api.mentions_timeline(count=count)

if not mention.id in id_blacklist]

The code defines a function that returns all the ids of the users that have
mentioned the bot in prior tweets (expressing some form of interest in the bot)
and whose ids are not contained in the list of banned ids id blacklist. /

Incidentally, these examples are also representative of two recurrent types of
patterns across multiple actions: for all those actions that somehow endorse a
user or a tweet (follow, like, mention, retweet), the analysis identified patterns
that do so indiscriminately or that do so by first checking if the involved user is
blacklisted or not. Independently of these examples, the analysis also identified
other recurrent types of patterns for these actions that endorse users only if they
are whitelisted. Other notable patterns implement massively repeated actions like
mass like and mass retweet, which aggressively endorse content by given users, or
specially targeted actions like targeted mention and targeted talk, which instead
carefully select the users to interact with (e.g., suicide candidates) and send
them particularly tailored messages (e.g., to point to help and prevent suicide).

4.4 E↵ects of actions: assessing potential harmfulness

Considering again the indiscriminate, blacklist and whitelist patterns, it is im-
portant to acknowledge that they implement di↵erent levels of sensibility of risk
as perceived by the developer. Indiscriminately retweeting content expresses ei-
ther a high level of trust in the users who produce the retweeted content, or it
expresses a lack of awareness of the risks that retweeting for example o↵ensive,
denigrating or obscene content may have on the reputation of the bot owner.
Either way, it becomes evident that each pattern may have a di↵erent e↵ect or
impact on the users a bot interacts with.

In our prior work [6], we identified 12 major types of abuses bots have com-
mitted in the past (see the top-right list in Figure 3) and that have produced
harm (remember Section 2.1). The first half of these abuses are legally prose-
cutable in most democratic countries (see, for example, New Zealands Harmful
Digital Communications Act of 2015 [14]). The typical question that remains
unanswered when harm occurs is why the respective abuse was committed.

Library Action 1: search

Action 2: follow

= search users pattern + indiscriminate follow pattern

Example

= blacklist-based mention pattern

Function definition
Mention search

Blacklist inclusion check

Effects

Enable an abuse
Logic that by design performs an abuse

Prevent an abuse
Logic that prevents the bot from performing an abuse

Be vulnerable to content abuse
Interactions with users and/or content that may be inappropriate

Be vulnerable to trust abuse
Forward, store or analyze content retrieved from users

Results

Patterns may

12 A. Millimaggi and F. Daniel

Follow

Like

Tweet

Mention

Retweet

Talk to

Pause

Store

Indiscriminate follow

Whitelist-based follow

Blacklist-based follow

Phantom follow

Indiscriminate like

Whitelist-based like

Blacklist-based like

Mass like

Fixed-content tweet

AI-generated tweet

Trusted source tweet

Indiscriminate mention

Opt-in mention

Targeted mention

Whitelist-based mention

Blacklist-based mention

Indiscriminate retweet

Whitelist-based retweet

Blacklist-based retweet

Mass retweet

Indiscriminate talk

Fixed-content talk

AI-generated talk

Talk with opt-in

Targeted talk

Mimic human

Satisfy API contraints

Store persistently

Action Pattern In
va

de
 s

pa
ce

Di
sc

los
e

se
ns

itiv
e

fa
ct

s

De
nig

ra
te

Be
 g

ro
ss

ly
of

fe
ns

ive

Be
 in

de
ce

nt
 o

r o
bs

ce
ne

Be
 th

re
at

en
ing

M
ak

e
fa

lse
 a

lle
ga

tio
ns

De
ce

ive
Sp

am

Sp
re

ad
 m

isi
nf

or
m

at
ion

M
im

ic
int

er
es

t
Cl

on
e

pr
ofi

le

Enables Prevents Vulnerable to content abuse Vulnerable to trust abuse

Ab
us
e

Fig. 3: Potential e↵ects of actions and patterns on the users in online communi-
cations: patterns either enable, prevent or are vulnerable to abuses. For example,
following an account with a denigrating or o↵ending username may perpetuate
and endorse the denigration or o↵ense.

Pattern-effect
matrix =
potential effects
of patterns

Results

12 A. Millimaggi and F. Daniel

Follow

Like

Tweet

Mention

Retweet

Talk to

Pause

Store

Indiscriminate follow

Whitelist-based follow

Blacklist-based follow

Phantom follow

Indiscriminate like

Whitelist-based like

Blacklist-based like

Mass like

Fixed-content tweet

AI-generated tweet

Trusted source tweet

Indiscriminate mention

Opt-in mention

Targeted mention

Whitelist-based mention

Blacklist-based mention

Indiscriminate retweet

Whitelist-based retweet

Blacklist-based retweet

Mass retweet

Indiscriminate talk

Fixed-content talk

AI-generated talk

Talk with opt-in

Targeted talk

Mimic human

Satisfy API contraints

Store persistently

Action Pattern In
va

de
 s

pa
ce

Di
sc

los
e

se
ns

itiv
e

fa
ct

s

De
nig

ra
te

Be
 g

ro
ss

ly
of

fe
ns

ive

Be
 in

de
ce

nt
 o

r o
bs

ce
ne

Be
 th

re
at

en
ing

M
ak

e
fa

lse
 a

lle
ga

tio
ns

De
ce

ive
Sp

am

Sp
re

ad
 m

isi
nf

or
m

at
ion

M
im

ic
int

er
es

t
Cl

on
e

pr
ofi

le

Enables Prevents Vulnerable to content abuse Vulnerable to trust abuse

Ab
us
e

Fig. 3: Potential e↵ects of actions and patterns on the users in online communi-
cations: patterns either enable, prevent or are vulnerable to abuses. For example,
following an account with a denigrating or o↵ending username may perpetuate
and endorse the denigration or o↵ense.

Zoom into Follow patterns

12 A. Millimaggi and F. Daniel

Follow

Like

Tweet

Mention

Retweet

Talk to

Pause

Store

Indiscriminate follow

Whitelist-based follow

Blacklist-based follow

Phantom follow

Indiscriminate like

Whitelist-based like

Blacklist-based like

Mass like

Fixed-content tweet

AI-generated tweet

Trusted source tweet

Indiscriminate mention

Opt-in mention

Targeted mention

Whitelist-based mention

Blacklist-based mention

Indiscriminate retweet

Whitelist-based retweet

Blacklist-based retweet

Mass retweet

Indiscriminate talk

Fixed-content talk

AI-generated talk

Talk with opt-in

Targeted talk

Mimic human

Satisfy API contraints

Store persistently

Action Pattern In
va

de
 s

pa
ce

Di
sc

los
e

se
ns

itiv
e

fa
ct

s

De
nig

ra
te

Be
 g

ro
ss

ly
of

fe
ns

ive

Be
 in

de
ce

nt
 o

r o
bs

ce
ne

Be
 th

re
at

en
ing

M
ak

e
fa

lse
 a

lle
ga

tio
ns

De
ce

ive
Sp

am

Sp
re

ad
 m

isi
nf

or
m

at
ion

M
im

ic
int

er
es

t
Cl

on
e

pr
ofi

le

Enables Prevents Vulnerable to content abuse Vulnerable to trust abuse

Ab
us
e

Fig. 3: Potential e↵ects of actions and patterns on the users in online communi-
cations: patterns either enable, prevent or are vulnerable to abuses. For example,
following an account with a denigrating or o↵ending username may perpetuate
and endorse the denigration or o↵ense.

12 A. Millimaggi and F. Daniel

Follow

Like

Tweet

Mention

Retweet

Talk to

Pause

Store

Indiscriminate follow

Whitelist-based follow

Blacklist-based follow

Phantom follow

Indiscriminate like

Whitelist-based like

Blacklist-based like

Mass like

Fixed-content tweet

AI-generated tweet

Trusted source tweet

Indiscriminate mention

Opt-in mention

Targeted mention

Whitelist-based mention

Blacklist-based mention

Indiscriminate retweet

Whitelist-based retweet

Blacklist-based retweet

Mass retweet

Indiscriminate talk

Fixed-content talk

AI-generated talk

Talk with opt-in

Targeted talk

Mimic human

Satisfy API contraints

Store persistently

Action Pattern In
va

de
 s

pa
ce

Di
sc

los
e

se
ns

itiv
e

fa
ct

s

De
nig

ra
te

Be
 g

ro
ss

ly
of

fe
ns

ive

Be
 in

de
ce

nt
 o

r o
bs

ce
ne

Be
 th

re
at

en
ing

M
ak

e
fa

lse
 a

lle
ga

tio
ns

De
ce

ive
Sp

am

Sp
re

ad
 m

isi
nf

or
m

at
ion

M
im

ic
int

er
es

t
Cl

on
e

pr
ofi

le

Enables Prevents Vulnerable to content abuse Vulnerable to trust abuse

Ab
us
e

Fig. 3: Potential e↵ects of actions and patterns on the users in online communi-
cations: patterns either enable, prevent or are vulnerable to abuses. For example,
following an account with a denigrating or o↵ending username may perpetuate
and endorse the denigration or o↵ense.

12 A. Millimaggi and F. Daniel

Follow

Like

Tweet

Mention

Retweet

Talk to

Pause

Store

Indiscriminate follow

Whitelist-based follow

Blacklist-based follow

Phantom follow

Indiscriminate like

Whitelist-based like

Blacklist-based like

Mass like

Fixed-content tweet

AI-generated tweet

Trusted source tweet

Indiscriminate mention

Opt-in mention

Targeted mention

Whitelist-based mention

Blacklist-based mention

Indiscriminate retweet

Whitelist-based retweet

Blacklist-based retweet

Mass retweet

Indiscriminate talk

Fixed-content talk

AI-generated talk

Talk with opt-in

Targeted talk

Mimic human

Satisfy API contraints

Store persistently

Action Pattern In
va

de
 s

pa
ce

Di
sc

los
e

se
ns

itiv
e

fa
ct

s

De
nig

ra
te

Be
 g

ro
ss

ly
of

fe
ns

ive

Be
 in

de
ce

nt
 o

r o
bs

ce
ne

Be
 th

re
at

en
ing

M
ak

e
fa

lse
 a

lle
ga

tio
ns

De
ce

ive
Sp

am

Sp
re

ad
 m

isi
nf

or
m

at
ion

M
im

ic
int

er
es

t
Cl

on
e

pr
ofi

le

Enables Prevents Vulnerable to content abuse Vulnerable to trust abuse

Ab
us
e

Fig. 3: Potential e↵ects of actions and patterns on the users in online communi-
cations: patterns either enable, prevent or are vulnerable to abuses. For example,
following an account with a denigrating or o↵ending username may perpetuate
and endorse the denigration or o↵ense.

Zoom into Tweet patterns

12 A. Millimaggi and F. Daniel

Follow

Like

Tweet

Mention

Retweet

Talk to

Pause

Store

Indiscriminate follow

Whitelist-based follow

Blacklist-based follow

Phantom follow

Indiscriminate like

Whitelist-based like

Blacklist-based like

Mass like

Fixed-content tweet

AI-generated tweet

Trusted source tweet

Indiscriminate mention

Opt-in mention

Targeted mention

Whitelist-based mention

Blacklist-based mention

Indiscriminate retweet

Whitelist-based retweet

Blacklist-based retweet

Mass retweet

Indiscriminate talk

Fixed-content talk

AI-generated talk

Talk with opt-in

Targeted talk

Mimic human

Satisfy API contraints

Store persistently

Action Pattern In
va

de
 s

pa
ce

Di
sc

los
e

se
ns

itiv
e

fa
ct

s

De
nig

ra
te

Be
 g

ro
ss

ly
of

fe
ns

ive

Be
 in

de
ce

nt
 o

r o
bs

ce
ne

Be
 th

re
at

en
ing

M
ak

e
fa

lse
 a

lle
ga

tio
ns

De
ce

ive
Sp

am

Sp
re

ad
 m

isi
nf

or
m

at
ion

M
im

ic
int

er
es

t
Cl

on
e

pr
ofi

le

Enables Prevents Vulnerable to content abuse Vulnerable to trust abuse

Ab
us
e

Fig. 3: Potential e↵ects of actions and patterns on the users in online communi-
cations: patterns either enable, prevent or are vulnerable to abuses. For example,
following an account with a denigrating or o↵ending username may perpetuate
and endorse the denigration or o↵ense.

Coming back to the “why” question… and using some
technical considerations on the nature of patterns…

enabling

content-
vulnerable

trust- 
vulnerable

Do so intentionally

May be unintentional

May be unintentional

Do so intentionally

Results

Summing up

Original perspective on bots for online communication: code
 
Contributions to state of the art:

1. Identified 31 patterns and 9 actions from 60 repositories  
 (~ 80 hours of manual code review + x of discussion)

2. Discussed effects of patterns and mapped patterns to  
 potential abuses

3. Technical interpretation of intentionality underlying bot  
 implementations

Next: formal language for action patterns + patterns search engine
for automated pattern retrieval from all collected repositories

