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Introduction



4

CPS-based Web of Things Environments

 Web of Things service
• “The Web of Things (WoT) is software architectural styles and 

programming patterns that allow real-world objects to be part of 
the World Wide Web.” [1]

• Providing services to the user by utilizing connected things

 Cyber-Physical System (CPS)
• “A cyber-physical system (CPS) is a mechanism that is controlled 

or monitored by computer-based algorithms, tightly integrated 
with the Internet and its users.” [2]

Effect-Driven Selection of Web of Things Services 
in Cyber-Physical Systems Using Reinforcement Learning

[1] https://en.wikipedia.org/wiki/Web_of_Things [2] https://en.wikipedia.org/wiki/Cyber-physical_system

https://en.wikipedia.org/wiki/Web_of_Things
https://en.wikipedia.org/wiki/Cyber-physical_system
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Important Characteristic of WoT Services and Problem

 Physical effect delivery
• Physical effects (ex. light, sound) generated by things should be 

delivered to the user and being perceived by the user properly

• User satisfaction of service is affected by quality of effect delivery

 Web service selection problem
• Selecting best service among functionally equivalent candidates

• In terms of network-level Quality of Service (QoS)

Availability, transmission delay, packet loss…

Effect-Driven Selection of Web of Things Services 
in Cyber-Physical Systems Using Reinforcement Learning

What if the selected service utilizes a speaker far away from the user?
QoS cannot capture the problem.
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Suggesting Solution

 Effect-driven selection of WoT services
• Selecting optimal services in terms of quality of physical effects

• The user will evaluate the quality,
and a selection algorithm should be able to predict the evaluation

 Dynamic selection of WoT services
• Dynamically selecting and replacing services to maintain high

effectiveness continuously

Effect-Driven Selection of Web of Things Services 
in Cyber-Physical Systems Using Reinforcement Learning

How to measure quality of physical effects 
in the user’s perspective?

How to select services in a predictive 
manner to deal with mobile users/devices?

Service effectiveness 
model

Dynamic service 
handover
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Research Issues



8

Research Roadmap

Effect-Driven Selection of Web of Things Services 
in Cyber-Physical Systems Using Reinforcement Learning
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Research Issues (Service Effectiveness)

 Computation model of service effectiveness
• Enable quantitative predicting the service effectiveness

Selection is done automatically according to the prediction

• Different service/effect type may have different model

Light, sound, heat, … 

 Service interference model
• Same or different type of physical effects may cause interferences

Constructive (synergy)

Destructive (disturbance)

• Develop interference-aware effectiveness model for multi-services

Effect-Driven Selection of Web of Things Services 
in Cyber-Physical Systems Using Reinforcement Learning
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Research Issues (Dynamic Service Handover)

 Dynamic service handover algorithm [1]
• Existing approaches do not consider dynamically changing 

environments

Users and services in WoT environments are highly dynamic

• Replacing service instance within another one 
to maintain high quality throughout the service provision

• Extension of network-level handover concept to service-level

 Predictive selection algorithm
• Predict future conditions of candidate services and select the 

most promising one

Reducing the number of service handover

Effect-Driven Selection of Web of Things Services 
in Cyber-Physical Systems Using Reinforcement Learning

[1] Baek, Kyeong-Deok, and In-Young Ko. "Spatially cohesive service discovery and dynamic service handover for distributed IoT
environments." International Conference on Web Engineering. Springer, Cham, 2017.
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Previous Works
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Previous Works (Service Effectiveness)

 Spatio-cohesiveness [1, 2]
• Measure how the selected devices are spatially cohesive

Assume highly cohesive devices are likely to provide high 
quality of physical effects, because of locality

• [Limitation] Short distance cannot guarantee effectiveness

 Visual service effectiveness [3]
• Rule-based model that measure 

whether a user can read texts on a display

Distance, Field of View (FoV), Facing rule

Effect-Driven Selection of Web of Things Services 
in Cyber-Physical Systems Using Reinforcement Learning

[1] Baek, Kyeong-Deok, and In-Young Ko. "Spatially cohesive service discovery and dynamic service handover for distributed IoT environments." 
International Conference on Web Engineering. Springer, Cham, 2017.
[2] Baek, KyeongDeok, and In-Young Ko. "Spatio-Cohesive Service Selection Using Machine Learning in Dynamic IoT Environments." International 
Conference on Web Engineering. Springer, Cham, 2018.
[3] Kyeongdeok Baek, and In-Young Ko, “Effect-driven Dynamic Selection of Physical Media for Visual IoT Services using Reinforcement Learning”, 
To appear in Proceedings of the 24th IEEE International Conference on Web Services (ICWS 2019), July 8 – 13, 2019, Milan, Italy
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Previous Works (Dynamic Service Handover)

 RL-based dynamic service selection (handover) algorithm [1, 2]
• Perform predictive and dynamic selection on services

Learn from experiences to select most promising service

• Tried actor-critic algorithm [1] and DQN algorithm [2]

Effect-Driven Selection of Web of Things Services 
in Cyber-Physical Systems Using Reinforcement Learning

[1] Baek, Kyeong-Deok, and In-Young Ko. "Spatially cohesive service discovery and dynamic service handover for distributed IoT environments." 
International Conference on Web Engineering. Springer, Cham, 2017.
[2] Kyeongdeok Baek, and In-Young Ko, “Effect-driven Dynamic Selection of Physical Media for Visual IoT Services using Reinforcement Learning”, To 
appear in Proceedings of the 24th IEEE International Conference on Web Services (ICWS 2019), July 8 – 13, 2019, Milan, Italy
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Research Plan
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Research Roadmap (Remind)

Effect-Driven Selection of Web of Things Services 
in Cyber-Physical Systems Using Reinforcement Learning
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Research Plan (Service Effectiveness)

1. Type-specific service effectiveness model
• Develop service effectiveness model for each type

Currently, only visual model is partially developed [1]

• Action items

1) Acoustic service effectiveness model

2) Improve visual service effectiveness model

2. Service interference model
• Analyze service interference among the services 

that generate similar or different types of physical effects

• Action items

1) Develop interference prediction model

Effect-Driven Selection of Web of Things Services 
in Cyber-Physical Systems Using Reinforcement Learning

[1] Kyeongdeok Baek, and In-Young Ko, “Effect-driven Dynamic Selection of Physical Media for Visual IoT Services using Reinforcement Learning”, To 
appear in Proceedings of the 24th IEEE International Conference on Web Services (ICWS 2019), July 8 – 13, 2019, Milan, Italy
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Research Plan (Dynamic Service Handover)

1. Virtual Reality-powered user study
• Perform user study for 

Evaluating practicality of our approach

Collecting realistic data from real users

• VR-powered simulation for cost-efficiency

 ICWE 2019 Demo [1]

2. Learn from human preferences
• Rather than using reward signals, guided by human preferences [2]

• Applying latest RL techniques

Effect-Driven Selection of Web of Things Services 
in Cyber-Physical Systems Using Reinforcement Learning

[1] Baek, KyeongDeok, HyeongCheol Moon, and In-Young Ko. "VR-Powered Scenario-Based Testing for Visual and Acoustic Web of Things Services." 
International Conference on Web Engineering. Springer, Cham, 2019.
[2] Christiano, P.F., Leike, J., Brown, T., Martic, M., Legg, S., Amodei, D.: Deep reinforcement learning from human preferences. In: Advances in 
Neural Information Processing Systems, pp. 4299–4307 (2017)
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