
Conversational Data Exploration
Nicola Castaldo, Florian Daniel, Maristella Matera,
and Vittorio Zaccaria

Goal = a framework for the fast development of
data exploration chatbots

Database
endpoint Database

Me give endpoint
access

extract schema
and instanceslearn

chat mediate

Very first prototype
in action

Requirements

Support generic data exploration vocabulary and actions
Extract and learn database-specific vocabulary
Extract and learn database-specific actions
Enable user to iteratively explore database
Allow user to manipulate query results

>> Challenges Learn data exploration intents from schema
Translate intents into SQL queries
Data visualization

>> Assumption In the beginning, involve database expert

Annotation of data model >> aid identification of intents and entities

Conversational Data Exploration 493

Fig. 2. Database schema and annotations for table types and conversational attributes.

relationships). This mapping is defined by a designer, who knows the structure
of the database and is in charge of modeling the dialogue flow for the interaction
with the database by the final user. In the following we will illustrate the main
ingredients of our conceptual modeling approach; to make the description easier
to follow, we will refer to an example database shown in Fig. 2.

Conversational Entities Based on Table Types. The first step is to charac-
terize the database tables as Primary (tag [P]), Secondary (tag [S]), or Cross-
able Relationship (tag [X]), to express the role that data entities play in the
exploration of data. The distinction between the first two types is that while
values belonging to a Primary table may represent useful information without
the need of a context, Secondary tables contain data strongly related to other
entities, which become clear only when that specific relationship is considered.
For example, tagging as Secondary the table payments means that the access to
its values depends on another table, customers. In other words, with this char-
acterization the designer defines that instances of payment can be retrieved only
by passing first through instances of customers – for example because payments
data would not be meaningful otherwise. Labeling tables as Primary, in contrast,
relaxes this dependence constraint and enables direct queries on tables. Finally,
Crossable Relationship characterization is dedicated to bridge tables, i.e., the
ones that represent many-to-many relationships between entities. Their rows
may have a meaning only when a join operation across them is executed; thus
no direct or deferred search is allowed on them.

Some tables might have names not suitable in the context of a conversation.
Thus, as reported in Fig. 2, each primary and secondary table has to be labeled
with a keyword, i.e., the name that will represent it during the conversation.
For example, in the request “find customer with contact John”, the chatbot
understands that customer is the placeholder for the table customers. Multiple
words can be associated to a table.

Primary table

Secondary table 
(requires context)

Crossable
relationship

Type Label

Conversational entities
Conversational attributes

Conversational Data Exploration 495

customer paymentproduct [X] order

contained products

in orders

made by customer

orders made

payments made

made by

Fig. 3. Annotations to specify conversational relationships.

SYSTEM

Connector

Parser
DB

NLP LibraryExtractor

End User

Conversation
channel

Executor

Context

Tr
ai

ne
r

mappings.json

element

nlu_data.md

db_schema.json

- element+attr+attr
- attr+element

intent

nlu_model

Designer

Fig. 4. Functional architecture for conversation generation and execution.

relationships depending on the direction in which they are traversed. Note that
the relation between product and order needs to be supported by a crossable
relationship table, being it a many-to-many relationship.

4 Design Process and System Architecture

The chatbot design process consists of both automatic and manual phases:

1. Parsing of the database schema (automatic): this is needed to interpret the
database schema and generate a simplified version enabling the annotation
activity;

2. Schema annotation (manual): the designer produces a new schema with all
the annotations needed to generate the conversation;

3. Generation of the training phrases (automatic): this consists of the training
of the Natural Language Understanding (NLU) model.

Figure 4 shows the organization of the current system prototype that supports
the previous phases. In this version the system works with relational databases
and SQL schemas; we are however working to generalize the approach to other
data models.

The first artifact is the JSON document, db schema.json, that the system
generates automatically by means of the Parser module. This is a Python script

Conversational relationships = specify navigation options (joins)

Crossable
relationship Generic relationships

Annotated entities

Conversational Data Exploration 495

customer paymentproduct [X] order

contained products

in orders

made by customer

orders made

payments made

made by

Fig. 3. Annotations to specify conversational relationships.

SYSTEM

Connector

Parser
DB

NLP LibraryExtractor

End User

Conversation
channel

Executor

Context

Tr
ai

ne
r

mappings.json

element

nlu_data.md

db_schema.json

- element+attr+attr
- attr+element

intent

nlu_model

Designer

Fig. 4. Functional architecture for conversation generation and execution.

relationships depending on the direction in which they are traversed. Note that
the relation between product and order needs to be supported by a crossable
relationship table, being it a many-to-many relationship.

4 Design Process and System Architecture

The chatbot design process consists of both automatic and manual phases:

1. Parsing of the database schema (automatic): this is needed to interpret the
database schema and generate a simplified version enabling the annotation
activity;

2. Schema annotation (manual): the designer produces a new schema with all
the annotations needed to generate the conversation;

3. Generation of the training phrases (automatic): this consists of the training
of the Natural Language Understanding (NLU) model.

Figure 4 shows the organization of the current system prototype that supports
the previous phases. In this version the system works with relational databases
and SQL schemas; we are however working to generalize the approach to other
data models.

The first artifact is the JSON document, db schema.json, that the system
generates automatically by means of the Parser module. This is a Python script

High-level architecture

>> Key steps 1. Parsing of database schema
2. Schema annotation
3. Generation of training phrases + training

E↵ort Frustration Mental
Demand

Physical
Demand

Temporal
Demand

Performance
0

20

40

60

80

100

Chatbot
MySQL

Figure 6.3: NASA-TLX dimensions: means and standard deviation comparison. Low

values represent high satisfaction.

6.7.4 User ranking of systems along completeness, eas-

iness and usefulness

The questionnaire administered at the end of each participant’s session asked

to rank the two systems based on their utility, completeness and ease of use

(from 1 to 2, 1 is the best). Regarding utility, Chatbot obtained an average

rank of 1.35 (SD = .49) while SQL a rank of 1.64 (SD = .49), but Wilcoxon

test highlights that this di↵erence is not statistically significant (Z = �1.069,

p = .285).

In case of completeness, Chatbot obtained an average rank of 1.85 (SD =

.36) while SQL a rank of 1.14 (SD = .36), which was significantly better, as

demonstrated by the Wilcoxon test (Z = �2.673, p = .008).

Finally, about usefulness, Chatbot obtained an average rank of 1.28 (SD =

.47) while SQL a rank of 1.71 (SD = .47), but no significant di↵erence was

found by the Wilcoxon test (Z = �1.604, p = .109).

73

User study: preliminary results are positive!

Measures workload

Conclusion

Conversational data exploration is feasible!
The proof-of-concept prototype works
Everything still preliminary, but excellent starting point
Model-based development helps boost productivity

Open challenges

Effective/interactive visualization of results
Automatic derivation of annotations (machine learning)

