

Crowdsourced Time-Sync Video Recommendation via Semantic-Aware Neural Collaborative Filtering

Zhanpeng Wu

School of Data and Computer Science Sun Yat-Sen University, Guangzhou, China

Joint work Yan Zhou, Di Wu, Yipeng Zhou, and Jing Qin

Time-synchronized Comment (TSC)

YouTube Live Chats

riaht nut La 🖨 @nosleeptv hey tip i just joined the stream stretch_II YES @Tylerx88 38 TERRIBLE PLAYERS 1 LMAO

n1000 lol

Twitch Chats

Bilibili

Nico Nico Douga

Traditional vs Context-aware

- Traditional Collaborative Filtering
 - $User \times Item \rightarrow Rating$
- Context-aware Recommendation
 - $User \times Item \times Context \rightarrow Rating$
 - Contextual information can be:
 - Location, Time, User comment, etc.

Item

A Time-sync Video Example

 Users with similar interests are more likely to get together and send a TSC

Available at https://www.bilibili.com/video/av22135056

► TSC data → Sequence data

- sort TSCs by timestamps
 - $\models \{TSC_1, TSC_2, \dots, TSC_T\}$
- each TSC contains two components
 - $TSC \Leftrightarrow < user, content >$
- user sequence
 - $\bullet \{user_1, user_2, \dots, user_N\}$
- content sequence
 - { $content_1$, $content_2$, ..., $content_L$ }

user representation

video representation

Dataset

首页

动画

番剧

国创

音乐

Time-synchronized comment dataset

舞蹈

游戏

科技

数码

生活

鬼畜

Category	Avg. TSCs / Video	Category	Avg. TSCs / Video
Anime	662	Guochuang	526
Dance	327	Live	864
Entertainment	597	Movie	688
Fashion	752	Music	677
Game	1208	Tech	776
Guichu	610	Collected from https://www.bilibili.com till 2018/11/15	

广告

时尚

娱乐

影视

Dataset

The fields we mainly used: user id, video id, TSC content, TSC timestamp

• For gaming category:

# of videos	$2,\!637$
# of users	$57,\!294$
# of TSCs	836,806
# of user-generated tags	$3,\!483$
Avg $\#$ of TSCs per user	14.61
Avg $\#$ of TSCs per video	317.33
Avg $\#$ of user-generated tags per video	7.01
Max/Min # of TSCs for a user	731/5
Max/Min # of TSCs for a video	4393/1
Max/Min # of user-generated tags for a video	14/1
Max/Min $\#$ of TSCs for a user leaving in a video	299/1

Collected from gaming category till 2018/12/15

Measurement

Basic statistics

Users tend to focus on only one or two categories.

The number of categories that user focused is exponentially decreasing.

Measurement

The length of the TSC is mostly distributed between 2 to 6

General Steps of SACF Algorithm

- Semantic-aware Collaborative Filtering
- Step 1: Extract the user representations

Step 2: Extract the video representations

Step 3: Learn the interactive function via DNN

Iearn the representations from user sequences

- Word2vec → User representations
- word \Leftrightarrow user_id

Iearn the representations from content sequences

- ► Doc2vec → Video representations
- ▶ word ⇔ TSC_id and doc ⇔ video_id

Semantic-aware Video Recommendation

Evaluation Metrics

- Hit Ratio (HR)
 - focus on Precision

$$\mathrm{HR} = \frac{\sum_{u \in u} |T(u) \cap R(u)|}{\sum_{u \in u} |T(u)|}$$

- Normalized Discounted Cumulative Gain (NDCG)
 - focus on Ranking Quality

$$DCG_q = \sum_{z=1}^{q} \frac{h(z)}{\log_2(i+1)}$$
$$NDCG_u = \frac{DCG_u}{DCG^*}$$
$$NDCG = \frac{1}{n} \sum_{u \in u} NDCG_u$$

* He X, Liao L, Zhang H, et al. Neural collaborative filtering

Alg.	Description	
MLP	Neural Network Recommendation Model *	
TCF	Tag Collaborative Filtering (with contextual info)	

Experiment 1: Performance Comparison

Performance under different latent factors (LF)

The size of the last hidden layer can be considered as the number of latent factors

Top-N Performance Evaluation

Recommended list length range from 1 to 10

(a) **HR@N**, **ES=64**, **LF=8**

(b) NDCG@N, ES=64, LF=8

Performance curves follow: MLP < TCF < SACF

中山大學

Experiment 2: Embedding Size

The embedding size determines the ability of the feature to describe the system

Experiment 3: Training Iterations

► Under-fitting → Over-fitting

(a) **HR@10**, **ES=64**, **LF=8**

(b) NDCG@10, ES=64, LF=8

Excessive iterations impair final performance

Future Work

Real-time Recommender System

- Real-time scenes are increasing
- user experience will be better in real-time
- Crowdsourced Heterogeneous Information Fusion
 - The source of contextual information is more abundant
 - User profile can be constructed more accurately

THANKS

Crowdsourced Time-Sync Video Recommendation via Semantic-Aware Neural Collaborative Filtering

Zhanpeng Wu

Sun Yat-sen University, Guangzhou, China wuzhp5@mail2.sysu.edu.cn

