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Behavioral modeling
+ optimization
+ machine learning

An alternative to the 
“deep learning temptation”



A new type of intelligence for IUI

Computation
Interaction

Behavioral 
sciences

Solve design problems 
algorithmically using as 
objective functions...

...learned from data...

Improve usability and 
experience of computers via... 

... that predict consequences 
of actions on users

...computational 
HCI models...



CS and EE at
Aalto University



I’m a computational cognitive scientist 
working on HCI

...in order to improve
computing for humans

I model human-technology 
interaction

... and develop new computational 
principles of design and adaptation
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Optimization
Design

Modeling
Behavioral sciences

Machine learning
Interactive systems



Opportunities for 
intelligent UIs



Interface design affects 
productivity, enjoyability, 
satisfaction, customer 
loyalty, inclusion, health, ...

Hard to get right: UID 
among top 3 reasons for 
success/fail of ICT projects 
[Miettinen 2013]



Most UIs are dumb (non-adaptive)

“One size fits all” design. 
Costly updates

Most adaptations concern 
recommendations, search 
lists, and ads



Design creates 
barriers

Increasing reliance 
on e-services widens 
the digital gap 
[OECD 2018]



Novel UIs is a major 
area of tech investment

Abysmal 
success rate

We’re bad at 
transferring 
knowledge



Design practice not an 
engineering discipline

Decisions done 
outside of software 
and coded to 
programs manually



Historical 
backdrop



Methods for intelligent UIs 
studied since 1970s
Logic
Information
Control
Optimization
Agents
Cognitive models
Learning
Probability
Neural networks

Computational Interaction 
(edited)

Oxford University Press 
2018



A paradox!
If algorithmic methods are 
superior, where are they?
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Four waves of AI that have hit HCI 

Wave 0: Cybernetics 
Wave 1: Rules and logic
Wave 2: Cognitive modeling
Wave 3: Pre-DL supervised learning
Wave 4: Deep learning

Let’s go through them to learn 
why they have not
revolutionarized the field
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W3 usiXML

Rule-based methods (1990s)A complex system 
representation that must 
be refined for every design 
iteration (manually)



Operations research started and 
stopped with keyboards

Burkard et al. 1977; Light & Anderson 1993; Zhai et al. 2000

OR lost interest as objective 
functions were not economics 
but psychology-focused



Psychology as the science of design

August Dvorak Herbert Simon Stuart Card
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Predictive 
cognitive 
models 
(1980s)

Card et al. GOMS
Models do not design 
anything, they simply evaluate



Generative cognitive models
Threaded Cognition (ACT-R, a driving simulator)

20

Example: Driving and Multitasking

62

Parts of the cognitive model 
(task script) must be redefined 
every time design changes



Tools for using cognitive models in 
evaluation
CogTool

Work of Bonnie John / 
IBM and CMU
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Big data and machine learning

“Correlationalism and the data deluge”

“Theory is 
dead. Data is 
the new king!”

Geoffrey Bowker’s summary
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Generative art by deep learning

Combines known patterns. Not 
easily controlled toward 
desirable properties
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Expero Deep learning has had limited 
success in UI design beyond 
generation of graphic designs



Autodesk

Combination of DL and physics 
models has been a success in 
computational design. But is 
insufficient for HCI
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Lots of hot air and 
broken promises...



User interface 
design is hard

1 Very large 
search spaces

2 Humans are 
hard to predict

3 Design is ill-specified 
and combines creative 
and problem-solving 
activities

4 Hard to 
change designs



Design is “speculation”

A useful theory contains counterfactual information about what 
will happen if a design decision is taken:

If design was <this>

then

interaction would be <this>



Design involves very large
search spaces

Example: Menu with 50 items 
can be organized in 1080 ways



Physics
Behavioral and cognitive sciences



UK Design Council
“Concept” “Artefact”

Design is ill-specified

Designers learn and solve at 
the same time when designing



Designs are “best achievable 
compromises”

Hard to know what the best 
compromise is without a 
human in the loop



Deep learning has had 
limited success in UI 
generation & adaptation



Gary Marcus

Issues for HCI: 
• poor transfer
• poor transparency
• difficult to engineer with



Behaviors

Designs

Space of possible
behaviors

Users System

Pick a design with 
desirable effects

Data

Models

Sense

Infer

Predict



This talk

1 Approach

2 Applications

3 Summary
Lots of examples coming up



Approach



Vision: A new type of MI for IUI

(1) Able to anticipate the consequences of its actions
(2) Represents its rationale in human-relatable terms 
(3) Chooses designs counterfactually
(4) Learns and updates itself in the light of user data 
(5) Operates conservatively, admitting the inherent fallibility 
of its input data and model



The design problem

Find the design (d) out of candidate set (D) that 
maximizes goodness (g) in given conditions (θ):

max

d2D
g(d, ✓)



Expanded...

max

d2D
E(g(d)|o)“Choose the design 

that maximizes 
expected goodness 

to users, given 
observations”

= max

d2D

Z
g

�
M(✓, d)

�
p(✓|o)d✓

“Choose the design that maximizes expected goodness 
predicted by a model inferred from observations”



Inspired by simulation models in 
science and engineerings
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Why we need causal models
1. Very hard inference problems
• Many possible explanations to human behavior
2. The is-ought problem
• Data alone does not prescribe a desirable future
3. High costs of design error
• Very few chances to “try one’s luck” in interaction
4. Deferral of reward
• The value of an action to humans is rarely directly 

observable We cannot solve these with 
a correlationalist approach
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“Machines that think like humans”
(a) build causal models of the world 
that support explanation and 
understanding, rather than merely 
solving pattern recognition problems; 
(b) ground learning in intuitive 
theories of physics and psychology, 
to support and enrich the knowledge that 
is learned; 
(c) harness compositionality and 
learning-to-learn to rapidly acquire and 
generalize knowledge to new tasks and 
situations.

In press at Behavioral and Brain Sciences.

Building Machines That Learn and Think Like People

Brenden M. Lake,
1 Tomer D. Ullman,2,4 Joshua B. Tenenbaum,2,4 and Samuel J. Gershman3,4

1Center for Data Science, New York University

2Department of Brain and Cognitive Sciences, MIT

3Department of Psychology and Center for Brain Science, Harvard University

4Center for Brains Minds and Machines
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Recent progress in artificial intelligence (AI) has renewed interest in building systems that

learn and think like people. Many advances have come from using deep neural networks trained

end-to-end in tasks such as object recognition, video games, and board games, achieving perfor-

mance that equals or even beats humans in some respects. Despite their biological inspiration

and performance achievements, these systems di↵er from human intelligence in crucial ways.

We review progress in cognitive science suggesting that truly human-like learning and thinking

machines will have to reach beyond current engineering trends in both what they learn, and how

they learn it. Specifically, we argue that these machines should (a) build causal models of the

world that support explanation and understanding, rather than merely solving pattern recog-

nition problems; (b) ground learning in intuitive theories of physics and psychology, to support

and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn

to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete

challenges and promising routes towards these goals that can combine the strengths of recent

neural network advances with more structured cognitive models.

1 Introduction

Artificial intelligence (AI) has been a story of booms and busts, yet by any traditional measure of

success, the last few years have been marked by exceptional progress. Much of this progress has

come from recent advances in “deep learning,” characterized by learning large neural-network-style

models with multiple layers of representation. These models have achieved remarkable gains in

many domains spanning object recognition, speech recognition, and control (LeCun, Bengio, &

Hinton, 2015; Schmidhuber, 2015). In object recognition, Krizhevsky, Sutskever, and Hinton

(2012) trained a deep convolutional neural network (convnets; LeCun et al., 1989) that nearly

halved the error rate of the previous state-of-the-art on the most challenging benchmark to date.

In the years since, convnets continue to dominate, recently approaching human-level performance

on some object recognition benchmarks (He, Zhang, Ren, & Sun, 2015; Russakovsky et al., 2015;

Szegedy et al., 2014). In automatic speech recognition, Hidden Markov Models (HMMs) have

been the leading approach since the late 1980s (Juang & Rabiner, 1990), yet this framework

has been chipped away piece by piece and replaced with deep learning components (Hinton et al.,
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"Grey boxing”
We combine models of human behavior with 
optimization and probabilistic inference 

Black box 
models 

(data first)

White box 
models 

(theory-first)

Grey box 
models

Fully controllable
High generality
Less data hungry
Hard to construct

High rep. power
Data hungry
Poor controllability
Low generality



“The stool”

Inference

Prediction

Optimization

Model



Model-driven human-computer 
interaction

47



Achievements 2010-2019: Overview

Solve design problems using optimization
• Many HCI problems defined by now
• Significant improvements in usability in hard problems
Support designers’ creativity and problem-solving
• Provide guarantees for result quality
Assist in the interpretation of complex behavioral data
Drive adaptive interfaces
• Improvements to an individual 5-25% in usability

Lots of advances last 10 years



Mathematical 
definition of design 
tasks

A bit more detail...



Model-driven human-computer 
interaction

50



Defining design problems
Example: IP definition of label selectiona quadratic problem of the following form.

min

 
P
`2L

t`y`,
P
u2U

P
`2Lu

mu`xu`,
P

k,`2L
dk`yky`

!

subject to
P
`2Lu

xu` = 1 8u 2 U

y` �
P
u2U`

xu` 8` 2 L

y`  1
xu` 2 {0, 1} 8u 2 U, ` 2 L
y` � 0 8` 2 L

(20)

Note that we introduced the auxiliary variables y` for every label ` 2 L denot-
ing if the respective label is selected by any command or not. It is su�cient
to require non-negativity of the auxiliary variables because any optimal so-
lution to (20) will contain only binary values for y. We also introduced the
set U` := {u 2 U |` 2 Lu} in order to simplify the formulation of the sec-
ond constraint. The constraints are more or less self-explaining. While the
first constraint ensures all commands to be labeled with exactly one of its
possible labels, the second constraint links the x and y variables. Lastly, we
make sure that no label is taken more than once. Note that we consider a
multi-criteria optimization problem here. One possible instantiation of the
objective function is a weighted sum of the three di↵erent objective parts.

In a more complex scenario, we also consider the similarity of commands
when talking about consistency. On the one hand, we want to achieve a
more consistent labeling of similar commands whereas, on the other hand,
we want to penalize inconsistent labels for non-similar commands less. In this
scenario, we are given similarity measures suv for two commands u, v 2 U .
The resulting optimization problem consists of the same constraints as the
ones in (20), but the objective function is slightly more complex.

min

 
X

`2L

t`y`,
X

u2U

X

`2Lu

mu`xu`,
X

u,v2U

X

k,`2L

suvdk` xukxv`

!
(21)

The number of terms in the third part of the objective function, which is
already the hardest part in (20) due to its quadratic nature, was increased
by a factor of |U |2.

12

Definition of a problem allows (1) 
analysis of problem complexity 
and (2) choice of best solver



Defining textbook-level GUI design 
problems as optimization problems

Widget selection
Dialogue and form design
Command sets
Navigation structures
Windowing
Notification scheduling
Task allocation
Assortment design
…



Advances in 2014-2019

Formulation of an existing scope of UI design problems
as known combinatorial problemsJOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 4

Application name

Menu option Menu option Menu option Menu option
X

TabTab TabTab

LabelLabel

LabelLabel

ButtonButton

PanePane

ContainerContainer ContainerContainer ContainerContainer

LabelLabel

LabelLabel

ButtonButton

(a) Desktop application (b) Hierarchical menu

Fig. 2: This paper surveys mathematical formulation of elementary GUI design tasks, including selecting functionality, choosing
labels and icons, assigning and ordering them in slots and containers and hierarchies, and deciding their properties like colors.

types and their properties like labels and colors and interactive
features; (3) deciding how associated interactions map to state-
changes in the program; (4) organizing components within
the space of their containers, deciding positions and sizes
and shapes without overlapping; (5) distributing components
across containers to form a hierarchy. Figure 2 illustrates three
common types of GUIs: web GUI, desktop GUI, and menu.
They consist of different mixtures of elementary decisions and
constraints. A prime goal of this paper is to expose these
elements.

Besides purely technical considerations (e.g., software,
hardware reliability), as well as considerations related to
marketing and brands, design objectives in GUI design are
end-user related. They include (1) usefulness, (2) user per-
formance such as speed and accuracy in completing tasks,
(3) learnability, and (4) aspects of user experience, such
as aesthetics, emotions, or perceived value. To understand
which objectives are important, companies invest significantly
into user research. User research methods include, among
others, surveys, online logging, controlled evaluations, and
observational studies. Methods like these are used to chart the
needs, practices, capabilities, and technical contexts of users.
However, it is widely accepted that the quality of design is
determined in actual use. This creates a hard challenge for
design. A designer must somehow anticipate how well users
will perform, and how they will use and experience a design
candidate. To this end, designers conventionally rely on design
heuristics (well-found rule-like conventions such as ”do not
use more than four colors to code information”), patterns,
empirical evaluation like usability and A/B testing, and per-
sonal experience [41]. Research on cognitive psychology and
human factors has exposed a number of mathematical and
simulation models that capture aspects of graphical interaction.
However, so far no comprehensive predictive model exists

for GUI interaction, although the topic has been of sustained
interest in research. However, many practical models exist for
focused topics. We review these later in the paper.

A. Brief History of Optimization-based Approached

Combinatorial optimization of GUIs has attracted inter-
est from a number of fields. However, efforts have been
fragmented. The papers surveyed in this paper have been
published in applied mathematics and operations research,
artificial intelligence, machine learning, software engineering,
human-computer interaction, ergonomics, design research, and
cognitive psychology. They have covered mathematical def-
initions of design problems, efficient solvers, the learning
of objective function parameters from data, description of
design tasks and device characteristics, creativity support for
designers, effect on design practice, and psychological models
as objective functions.

While a review of the intellectual history of this area is
beyond the scope of this paper, four milestones are worth
mentioning. The first is the expanding scope of mathematically
defined design problems. The definition of layout tasks as
a quadratic assignment task was pioneered by Burkard [13]
in keyboard design (see [42] for a review). The observation
that graphical layouts can be defined as a packing problem
was made by Hart and colleagues [15]. Constraints have
been discovered that can be exploited to ensure feasible
layouts [43], for example that elements are not overlapping or
clipped. These definitions, that form the core of combinatorial
solutions, are expanded in Section III. Constraint satisfaction
alone, however, was inadequate for producing full designs
beyond layouts. Constraint systems are hard to develop and
maintain and they do not produce a meaningful criterion for
the goodness of a design.

Assignment
Selection
Packing
Ordering
Layouts

[Oulasvirta et al. submitted]



Predictive models 
of human behavior

A bit more detail...



Model-driven human-computer 
interaction
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Many modeling families

Behavioral heuristics
if-then rules

Mathematical models

Generative models
E.g., symbolic, neural, or biomechanical

à A multi-objective function for design

y = f(x,�) + ✏

g(x) = !1g1(x) + · · ·+ !qgq(x)



Example: Model of menu selection
14.6.201957

Bailly, Oulasvirta, Brumby, Howes CHI 2014
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Machine learning is 
revolutionarizing 
cognitive modeling



How should I search for “politics”?



ML can predict users’ behavioral 
strategies (how people adapt)

Policy learning
Utility learning
Bayesian brain
...

Payne & Howes 2013; Chen et al. 2015



RL-KLM

Figure 1: RL is here used to obtain task policies for KLMs.
Task policies can be learned via RL when KLM is modeled as
an MDP with UI-specified states and actions. We use the time
costs of KLM operators as negative action rewards.

RL-KLM
KLM is here defined as a Markov Decision Process (MDP).
Time costs of the KLM operators define negative rewards to
actions (Figure 1). A benefit of this approach is that only a
state-action simulator and the KLM operators mapped to it are
needed to represent the UI.

The resulting MDP can be solved using regular RL methods
such as Q-learning. The obtained policy is the optimal action
sequence that can then be deployed to assess the UI for task
completion time. In addition to ability to simulate noise in
input/ouput, extensibility is a potential benefit. Any mem-
oryless operator type, even ones not yet specified in KLM
literature, can be added to the MDP, assuming they can be
unambiguously mapped to corresponding responses of the UI.

KLM as an MDP
The Markov Decision Process (MDP) is a memoryless pro-
cess which is used to model sequential decision making [25].
An MDP is defined by the tuple (S,A,P(a,s,s0),R(a,s,s0),g),
where S is a finite set of states, A is a finite set of actions
and P(a,s,s0) defines the transition probabilities between the
states. At each time step, the agent is in some state s 2 S. The
state can be changed to s0 2 S by an action a 2 A. After each
action, the agent receives a reward r = R(a,s,s0). The policy
p(s) defines which action is performed in each state. The
agent’s problem is to choose a policy p(s), which maximizes
the cumulative reward over an episode. The discount factor
for rewards is g .

KLM is a linear model for estimating task completion time
[4]. In the standard description, the user is not modeled as
an agent making choices, but rather executing a prescribed
sequence of actions (operators). Task completion time is the
sum of time spent in actions (KLM operators) t(a) that the
agent must perform when interacting I with the UI to solve
task goal gtask 2 Gtasks:

t(gtask,gUI) =
I

Â
i=1

t(ai). (1)

The original KLM [4] defined six operators, but many others
have been added since. They share the property of being

memoryless: the time cost of an operator is not dependent on
anything else than the state of the UI.

When KLM is represented as an MDP, the user is modeled as
an agent: At any time the agent is in a state defined by the UI,
and has some actions a available, which are mapped to KLM
operators O1. Actions change the state of the UI. The agent’s
goal is to change the UI to a specific state. The policy p(s)
tells which operators the agent should perform in which state
to get to this goal.

To learn the policy via RL, the agent receives a time penalty
r from each action defined by the reward function. Positive r
can be attributed to successfully reaching the end-states, while
KLM’s operator durations define negative r (time costs). The
state transitions P(a,s,s0) represent how likely it is that action
is successful and the state changes match the user’s expecta-
tions. The probabilities less than one when modeling input
or output with errors. This formulation requires no additions
to the standard MDP. Moreover, a benefit of the MDP formu-
lation is that it allows not only expressing cases with errors
(e.g., speech recognition error) but any case where input to the
system is not fully under user’s control. However, learning a
policy assuming noisy sensors will require on average more
iterations to converge.

Solving the MDP with Reinforcement Learning
The optimal policy p(s) can be obtained with a variety of RL
methods [26], which generally work well when state-action
spaces are not large. In this paper, we use the well-known
e-greedy Q-learning with episodic tasks for each task. In Q-
learning, expected reward guides policy learning. It is defined
for each state-action pair Q(s,a). During the training, in each
interaction step i, the learning agent selects an action ai, moves
to the state si and is rewarded with ri. The Q-value is updated
at each step by value iteration:

Q(si,ai) Q(si,ai)+a · (ri + g ·max
a

Q(si+1,a)�Q(si,ai)),

(2)
where a is a learning rate and maxa Q(si+1,a) an estimate of
the optimal future Q-value. The optimal policy finds a path
to the goal from any starting state (assuming all states are
reachable). It addresses how a user recovers from input/output
errors that lead to unexpected (wrong) state changes.

Estimating Task Completion Time
Finally, task completion time for the given task and UI can be
estimated by executing the learned policy. The policy, when
exploration (epsilon) is turned off, is a deterministic action
sequence for the KLM model. It can be executed starting from
any state of the UI.

To evaluate the whole UI gUI , average task completion can be
computed as a weighted sum using prior probabilities of all
user tasks ptask:

t(Gtasks,gUI) =
Gtasks

Â
task=1

ptaskt(gtask,gUI). (3)

1The wait operator is mapped to system state change.

Automated assessment of task completion time on point-and-click UIs 
with reinforcement learning & KLM

Leino et al. Proc. IUI’19
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Design

Anatomy

Goals

Feedback

Kinematics

Dynamics

Precision

Effort

Human-like 
responses

Learn

Robotic simulation 
of human button-
pressing [Oulasvirta CHI’18]



Visual sampling

Modeling visual search as a function of learning

Jokinen et al. Proc. CHI 2017

Figure 1. The visual search model predicts visual search times for new and changed layouts. For a novice user without any prior exposure to the layout,
the model predicts that of the three elements chosen for this comparison, the salient green element is the fastest to find. After learning the locations of
the elements, the expert model finds all fairly quickly. At this point, one blue element and the green element change place. Search times for the moved
blue element are longer than for the green element, because the model remembers the distinctive features of the latter.

then simulates visual search for these targets and outputs eye-
movement data and search time. The output can be used for
detailed analysis of single-task eye-movement behaviour, or
the data can be aggregated to produce average search times.
In addition, the layout can be changed mid-run to simulate
relearning. Figure 1 shows model-predicted search times for
a layout with elements of different feature sets. Initially, the
model has no prior knowledge of the layout and search is
slow, except for visually distinct elements. As the model
starts to learn by creating associations of targets with their
locations and visual features, search becomes faster. If the
layout changes, memory of the element locations is incorrect
and the model must relearn them. However, if the elements
retain their distinct features, the model can use this knowledge
to quickly find the moved element.

Designers can use the model for investigating layout learning
in two general situations:

• New layout: How long does it take to learn a new lay-
out, given the number, locations, and visual features of
elements?

• Changed layout: Given a user history with a layout and
a new layout that is a variation thereof, what is the initial
impact of the layout change on visual search times, and how
long does it take to relearn the changed layout?

We will now proceed to describe the model and the principles
behind it. We present results from an experiment testing the

validity across a range of realistic layouts: a website, a con-
sumer interface, and an operating system start menu. We use
the model to investigate various scenarios of layout learning,
such as the effect of a new salient layout element (e.g., an
advertisement) on visual search, and grouping of items in a
layout by their visual features.

RELATED WORK AND GOALS
Models of Vision and Learning
Learning of UIs has been a topic of long-term interest in mod-
elling in HCI [1, 7, 10, 11, 25, 30, 36, 38]. However, only
a few papers have looked at the case of learning graphical
user interfaces. Fleetwood and Byrne [17] examined visual
search strategies for UIs, with a close focus on eye movements.
However, their model did not look into the effect of learning
on visual search patterns and search times. A recent paper
presented a model of layout learning, but it focused on key-
boards only [22]. Keyboard layouts are a constrained instance
of graphical layouts wherein elements are presented in a grid
lattice. All elements are further assumed to be of the same
size, colour, and shape. Conversely, a model utilising an active
vision approach emphasised these features of visual elements
and also included the notion of visual threshold or acuity for
the features [27]. However, this model did not make statements
about learning. An earlier model of layout learning utilised
position learning and addressed some aspects of feature-based
search but did not explicate a model of full feature-guidance
with visual threshold, nor model relearning of changed layouts
[15]. We set out to build on these models, combining ideas

Figure 2. On the basis of expected utility, the controller requests atten-
tion deployment to a new visual element from the eye-movement system.
This directs attention to the most salient unattended visible object and
results in its encoding. If locational or feature information is accessi-
ble in the LTM, the controller, learning the utilities of its actions, can
optionally also request these features to be considered in the attention
deployment. Encoded objects are stored in VSTM, which inhibits revis-
its. Location and visual features of the elements are stored in LTM for
future recall.

and the visual element scoring highest is attended next. An at-
tention request is followed by a rapid eye movement (saccade)
towards the target and a subsequent encoding, unless the target
is close enough to the current fixation to be encoded without
a saccade. If the encoded element is not the target that the
model is searching for, it makes a new attention deployment
request.

LTM stores the locations and visual features of layout elements
for future retrieval. The probability that the model will be
able to retrieve the details about the target, along with the
probability that the retrieval will be successful, depends on
how often the model previously encountered the target and on
how far in the past these encounters occurred. Repeated and
recent exposure strengthens the associative connection and
makes retrieving the location and visual features of an object
more probable and faster. The controller learns the utilities of
different requests to the feature-guidance component. In case
of a layout change, when an object has for instance moved
but its features have not changed (such as in Figure 1, the
controller learns not to make location requests but rely on
feature requests, until LTM has updated this information. The
described flow of information from the memory resources to
the controller, and of requests from the controller to vision,
are depicted in Figure 2.

Attention and Eye Movements
FEATURE-GUIDANCE The goal for the model is to find the
target object by encoding visual objects of the environment.

Encoding an object allows the model to decide whether it is
the target or a distractor. Before the model can encode any ob-
jects, it needs to attend one. The feature-guidance component
holds a visual representation of the environment, and at the
controller’s request it resolves the request to deploy attention
to one of the objects in it. The attended target is determined by
the properties of the visual objects. Their properties’ presence
in the visual representation is based on their eccentricity. A
feature is visually represented if its angular size is larger than

ae2 �be, (1)

where e is the eccentricity of the object (in the same units as
the size) and a and b are free parameters that depend on the
visual feature in question. Their values, from the literature, are
a = 0.104 and b = 0.85 for colour, 0.14 and 0.96 for shape,
and 0.142 and 0.96 for size [35].

On the basis of the represented visual features, each object is
given a total activation as a weighted sum of bottom-up and
top-down activations. Bottom-up activation is the saliency of
an object, calculated as the dissimilarity of its features v to all
other objects of the environment, weighted by the square root
of the linear distance d between the objects:

BAi =
ob jects

Â
j

f eatures

Â
k

=
dissim(vik,v jk)p

di j
. (2)

Two objects are dissimilar for a feature if this feature is not
shared exactly between them in the model’s visual representa-
tion. Hence, bottom-up activation of an object increases if it is
close to objects that do not share its features. If the controller
does not include a set of features in the attention deployment
request, attention is guided towards the object with highest
bottom-up saliency. However, the controller can optionally
include a feature set to be matched in the attention deployment
that results in a top-down guidance of attention. Top-down
activation entails the similarity of the feature set of the object
to an optional controller-requested feature set:

TAi =
f eatures

Â
j

sim( fik, f j), (3)

where similarity between the model-requested feature fk and
the object’s feature f j is 1 for a match, 0 for a mismatch,
and 0.5 if the property fik is not present in the model’s visual
representation.

The total activation of an object is the sum of bottom-up and
top-down activations, weighted by constants (WBA = 1.1 for
bottom-up and WBA = 0.45 for top-down), plus noise from a
logistic distribution with SD = sTA = 0.376 [35]. An attention
deployment request by the controller results in attending the
object with highest total activation.

EYE MOVEMENTS After an attention deployment has been
resolved, the model needs to attend and encode the object with
highest activation, as calculated above. The eye-movement
component constrains the model by enforcing the encoding
time as a function of the eccentricity of the object. It also
provides a resource for moving the eyes closer to the target in
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Figure 1. The visual search model predicts visual search times for new and changed layouts. For a novice user without any prior exposure to the layout,
the model predicts that of the three elements chosen for this comparison, the salient green element is the fastest to find. After learning the locations of
the elements, the expert model finds all fairly quickly. At this point, one blue element and the green element change place. Search times for the moved
blue element are longer than for the green element, because the model remembers the distinctive features of the latter.

then simulates visual search for these targets and outputs eye-
movement data and search time. The output can be used for
detailed analysis of single-task eye-movement behaviour, or
the data can be aggregated to produce average search times.
In addition, the layout can be changed mid-run to simulate
relearning. Figure 1 shows model-predicted search times for
a layout with elements of different feature sets. Initially, the
model has no prior knowledge of the layout and search is
slow, except for visually distinct elements. As the model
starts to learn by creating associations of targets with their
locations and visual features, search becomes faster. If the
layout changes, memory of the element locations is incorrect
and the model must relearn them. However, if the elements
retain their distinct features, the model can use this knowledge
to quickly find the moved element.

Designers can use the model for investigating layout learning
in two general situations:

• New layout: How long does it take to learn a new lay-
out, given the number, locations, and visual features of
elements?

• Changed layout: Given a user history with a layout and
a new layout that is a variation thereof, what is the initial
impact of the layout change on visual search times, and how
long does it take to relearn the changed layout?

We will now proceed to describe the model and the principles
behind it. We present results from an experiment testing the

validity across a range of realistic layouts: a website, a con-
sumer interface, and an operating system start menu. We use
the model to investigate various scenarios of layout learning,
such as the effect of a new salient layout element (e.g., an
advertisement) on visual search, and grouping of items in a
layout by their visual features.

RELATED WORK AND GOALS
Models of Vision and Learning
Learning of UIs has been a topic of long-term interest in mod-
elling in HCI [1, 7, 10, 11, 25, 30, 36, 38]. However, only
a few papers have looked at the case of learning graphical
user interfaces. Fleetwood and Byrne [17] examined visual
search strategies for UIs, with a close focus on eye movements.
However, their model did not look into the effect of learning
on visual search patterns and search times. A recent paper
presented a model of layout learning, but it focused on key-
boards only [22]. Keyboard layouts are a constrained instance
of graphical layouts wherein elements are presented in a grid
lattice. All elements are further assumed to be of the same
size, colour, and shape. Conversely, a model utilising an active
vision approach emphasised these features of visual elements
and also included the notion of visual threshold or acuity for
the features [27]. However, this model did not make statements
about learning. An earlier model of layout learning utilised
position learning and addressed some aspects of feature-based
search but did not explicate a model of full feature-guidance
with visual threshold, nor model relearning of changed layouts
[15]. We set out to build on these models, combining ideas
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sumer interface, and an operating system start menu. We use
the model to investigate various scenarios of layout learning,
such as the effect of a new salient layout element (e.g., an
advertisement) on visual search, and grouping of items in a
layout by their visual features.

RELATED WORK AND GOALS
Models of Vision and Learning
Learning of UIs has been a topic of long-term interest in mod-
elling in HCI [1, 7, 10, 11, 25, 30, 36, 38]. However, only
a few papers have looked at the case of learning graphical
user interfaces. Fleetwood and Byrne [17] examined visual
search strategies for UIs, with a close focus on eye movements.
However, their model did not look into the effect of learning
on visual search patterns and search times. A recent paper
presented a model of layout learning, but it focused on key-
boards only [22]. Keyboard layouts are a constrained instance
of graphical layouts wherein elements are presented in a grid
lattice. All elements are further assumed to be of the same
size, colour, and shape. Conversely, a model utilising an active
vision approach emphasised these features of visual elements
and also included the notion of visual threshold or acuity for
the features [27]. However, this model did not make statements
about learning. An earlier model of layout learning utilised
position learning and addressed some aspects of feature-based
search but did not explicate a model of full feature-guidance
with visual threshold, nor model relearning of changed layouts
[15]. We set out to build on these models, combining ideas
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then simulates visual search for these targets and outputs eye-
movement data and search time. The output can be used for
detailed analysis of single-task eye-movement behaviour, or
the data can be aggregated to produce average search times.
In addition, the layout can be changed mid-run to simulate
relearning. Figure 1 shows model-predicted search times for
a layout with elements of different feature sets. Initially, the
model has no prior knowledge of the layout and search is
slow, except for visually distinct elements. As the model
starts to learn by creating associations of targets with their
locations and visual features, search becomes faster. If the
layout changes, memory of the element locations is incorrect
and the model must relearn them. However, if the elements
retain their distinct features, the model can use this knowledge
to quickly find the moved element.
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• New layout: How long does it take to learn a new lay-
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• Changed layout: Given a user history with a layout and
a new layout that is a variation thereof, what is the initial
impact of the layout change on visual search times, and how
long does it take to relearn the changed layout?

We will now proceed to describe the model and the principles
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validity across a range of realistic layouts: a website, a con-
sumer interface, and an operating system start menu. We use
the model to investigate various scenarios of layout learning,
such as the effect of a new salient layout element (e.g., an
advertisement) on visual search, and grouping of items in a
layout by their visual features.

RELATED WORK AND GOALS
Models of Vision and Learning
Learning of UIs has been a topic of long-term interest in mod-
elling in HCI [1, 7, 10, 11, 25, 30, 36, 38]. However, only
a few papers have looked at the case of learning graphical
user interfaces. Fleetwood and Byrne [17] examined visual
search strategies for UIs, with a close focus on eye movements.
However, their model did not look into the effect of learning
on visual search patterns and search times. A recent paper
presented a model of layout learning, but it focused on key-
boards only [22]. Keyboard layouts are a constrained instance
of graphical layouts wherein elements are presented in a grid
lattice. All elements are further assumed to be of the same
size, colour, and shape. Conversely, a model utilising an active
vision approach emphasised these features of visual elements
and also included the notion of visual threshold or acuity for
the features [27]. However, this model did not make statements
about learning. An earlier model of layout learning utilised
position learning and addressed some aspects of feature-based
search but did not explicate a model of full feature-guidance
with visual threshold, nor model relearning of changed layouts
[15]. We set out to build on these models, combining ideas
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Example: A model 
of menu search

Finds optimal gaze pattern 
given menu design and 
parameters of the visual 
and cognitive system

constraints imposed by the mechanisms concern saccade and
fixation latencies [35] and also the reduction of acuity with
eccentricity from the fovea [25]. It has been shown that given
these constraints, strategies can be derived through the use
of reinforcement learning algorithms [12, 19, 37], though it
is possible that strategies may be acquired by other learning
mechanisms, for example, by cultural transmission, through
instructions, or by evolution.

The approach that we take is also influenced by ideas in opti-
mal control and Machine Learning [5, 36, 38]. A key contri-
bution of this literature has been to provide a formal basis
for learning an optimal control policy given only a defini-
tion of the reward function, the state space, and the action
space. Control knowledge is simply knowledge that deter-
mines what-to-do-when. In the case of menu search it con-
cerns where to move the eyes and when to select an item.
In this framework, the expected value of an action given a
state is the sum of the immediate reward plus the rewards
that would accrue from subsequent actions if that action were
selected. This simple assumption has provided a means of
deriving human visual search strategies in well-known labo-
ratory tasks [12]. It also provides a means by which to de-
rive rational menu search behaviour given assumptions about
utility, ecology and psychological mechanisms but only if the
user’s menu search problem can be defined as a reinforcement
learning problem. In the following section we report a model
that does just that.
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Figure 2: An overview of the adaptive menu search model.

THEORY AND MODEL
Imagine that the goal for a user who is experienced with
menus, but who has never used Apple’s OS X Safari browser

before, is to select ‘Show Next Tab’ from the Safari Window
menu. This task and menu are illustrated to the bottom-left
of Figure 2. A user might solve this goal by first fixating the
top menu item, encoding the word ‘Minimize’; rejecting it
as irrelevant to the target, moving the eyes to the next group
of items, that begins ‘Show Previous Tab’, noticing that this
item is not the target but is closely related and also noticing, in
peripheral vision, that the next item has a similar word shape
and length to the target; then moving the eyes to ‘Show Next
Tab’, confirming that it is the target and selecting it. The aim
of the modelling is that behaviours such as this should emerge
from theoretical assumptions. Importantly, the aim is not to
model how people learn specific menus and the location of
specific items, rather the aim is to model the menu search
task in general. The requirement is that the model should
learn, from experience, the best way to search for new targets
in new, previously unseen, menus.

To achieve this goal we use a state estimation and optimal
control approach. In Figure 2 an external representation of
the displayed menu is fixated and the state estimator encodes
a percept containing information about the relevance of word
shapes (‘Minimise’ and ‘Zoom’, for example have different
lengths) and semantics (word meanings). This information is
used to update a state vector, which has an element for the
shape relevance of every item in the menu, an element for the
semantic relevance of every item in the menu, and an element
for the current fixation location. The vector items are null un-
til estimates are acquired through visual perception. Updates
are made after every fixation, e.g. after fixating ‘Minimize’
in the above example. After having encoded new informa-
tion through visual perception, the optimal controller chooses
an action on the basis of the available state estimate and the
strategy (i.e., the policy that determines a state-action value
function). The chosen action might be to fixate on another
item or to make a selection, or to exit the menu if the target
is probably absent. State-action values are updated incremen-
tally (learned) as reward and cost feedback is received from
the interaction. The menu search problem is thereby defined
as a reinforcement learning problem [38].

The paragraph above offers only a very brief overview of the
theory and it leaves out many of the details. In the following
subsections more detail is provided about how the state esti-
mation and optimal controller work. Subsequently a model
walkthrough is provided.

State estimator
The state estimator (the bottom right of Figure 2) encodes
semantic, alphabetic and shape information, constrained by
visual and cognitive mechanisms.

Semantic relevance
In common with many previous models of menu search [8,
15, 28, 34, 33], our model assumes that people have an abil-
ity to determine the semantic relevance of items by matching
them to the goal specification. To implement this assumption,
we used average pairwise relevance ratings gathered from hu-
man participants (which are taken from [2]). These relevance
ratings are described in detail below. For now, consider the
following example: if the model sampled the goal Zoom and

[Chen et al. CHI’15]



ABC helps us infer model parameters 
from data logs
Given click times, predict model (HVS) parameters

Parameter Description
fdur Fixation duration
dsel Time cost for selecting an item

(added to the duration of the last fix-
ation of the episode if the user made
a selection)

prec Probability of recalling the seman-
tic relevances of all of the menu
items during the first fixation of the
episode

psem Probability of perceiving the seman-
tic relevance of menu items above
and below of the fixated item

Table 1. Parameters inferred with ABC in Studies 1-3.

[5]. To comply with this and to reduce the complexity of the
state space, we assumed that there is no detectable difference
in the length of the items. Thus we used the model variant
from Chen et al. [13] where the only detectable feature is
the semantic similarity to the target item. In Study 2 reported
below, we will explore three additions to the model and their
effect on the predictions. All model parameters inferred with
ABC, across the studies, are listed in Table 1.

EXPERIMENTS AND RESULTS
In the rest of the paper, we show with three case studies how
ABC can be used to improve the current modeling practices.
All studies use the Chen et al. model [13], and the core prob-
lem in all is inverse modeling: Given aggregate observation
data (task completion times), find the most likely parameter
values q and their distribution, such that the predictions made
by the model agree with the observations.

1. Study 1. ABC compared to manual tuning: We demon-
strate that ABC can improve model fit by inferring parame-
ter values from data, compared to the common practice of
setting them manually based on the literature.

2. Study 2. ABC in model development: We demonstrate
how ABC helps in improving models, by fitting multiple
models to same data, exposing differences and anomalies.

3. Study 3. ABC in modeling individual differences: We
demonstrate how individual models can be fit with ABC, by
conditioning the model to individual data.

We use the same dataset as Chen et al. [13], which is a subset
of a study reported by Bailly et al. [5] and based on the study
design of Nilsen [33]. In the study, a label is shown and the
user must click the correct item in a menu with 8 elements
as quickly as possible. Items were repeated multiple times to
understand practice effects. Multiple menus were used, and
target position and absence/presence of target systematically
varied. Eye movement data were collected and processed
for fixation and saccade durations. Twenty-one paid partici-
pants took part in the study. Further details of the study that
produced the data are reported in [5].

We implemented the BOLFI algorithm in Python. Parts of the
source code were later published within an open-source library
for likelihood-free inference [24]. Running the experiments

took around one day each on a cluster computer. Further
technical details of the experiments and implementation are
described in the Appendix.

Study 1. ABC Compared to Manual Tuning
Our aim in the first study was to analyze how much we can
improve the predictions made by the model by conditioning
values of key parameters on observation data instead of the
standard practice of choosing all of the parameter values man-
ually. The case study was chosen to represent the common
setting in HCI research where only aggregate data may be
available.

We used the model of Chen et al. [13], and compared the
parameter values inferred by ABC to those set based on litera-
ture in the original paper [13]. We predicted task completion
times (TCT) and fixation durations with both models, and
compared them with observation data from [5]. For simplic-
ity, we inferred the value of only one parameter q with ABC,
the fixation duration fdur. The rest of the model parameter
values were set to be identical with the baseline model. The
value of this parameter was conditioned on the observed ag-
gregate task completion times (TCT; combined observations
from both menu conditions: target absent—referred to as abs,
target present—referred to as pre). Chen et al. [13] set the
value of this parameter to 400 ms based on a study by Brumby
et al. [8].

Results
As shown in Figure 5, the parameter value inferred with ABC
lead to the model predictions matching better to observation
data not used for the modelling. This holds both for TCT
and fixation duration. In detail, the ground truth aggregated
TCT was 0.92 s (std 0.38 s). The manually fit model pre-
dicted 1.49 s (std 0.68 s), whereas the ABC fit model predicted
0.93 s (std 0.40 s). For predictions, we used the maximum a
posteriori (MAP) value predicted by ABC, which was 244 ms
for fixation duration (detail not shown). This corresponds to
values often encountered in e.g. reading tasks [40].

In summary, inferring the fixation duration parameter value
using ABC lead to improved predictions, compared to setting
the parameter value manually based on literature. The inferred
parameter value was also reasonable based on literature.

Observations on the Resulting Models
A closer inspection of predictions made by the models exposed
two problematic issues which led to improvements in Study
2. The first issue is that while the aggregate TCT predictions
were accurate, and all predictions with ABC were better com-
pared to manual tuning, even ABC-fitted predictions were not
reasonable when split to sub-cases according to whether the
target was present in the menu or not. This is clearly visible
in Figure 5 (rows two and three), where we notice that the
predicted TCT when target is absent is actually around four to
six times as long as the actual user behavior.

The second issue concerns the search strategies predicted by
the model. Chen et al. [13] showed that their model was able
to learn a behavior strategy, where the agent would look first
at the topmost item, and second at the 5th item, which was

Case Study: Visual Search

A recent model for visual search in
drop-down menus (Chen et al. CHI 2015)

With ABC, the predictions match
better to observations

Kangasrääsiö et al. CHI 2107, Cognitive Science
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ABC yields posterior estimations

Bayesian inference yields a posterior distribution for model 
parameters
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Figure 4 . A visualization of the approximate unnormalized posterior probability through 2D

and 1D slices centered around the estimated mean of the function (RT -2.9, ANS 0.08, LF

0.07, BLC 12.2). Constructed using the Gaussian process model visualized in the previous

figure and the prior distribution (using threshold Á = 0.48, which is 0.01 above the estimated

minimum of the GP). The colormap is such that black is value 0.0, white is 4.0; lighter scales

indicate higher posterior probability. Around 5 minutes of additional CPU time was required

for constructing the ABC posterior, of which most time was spent on computing the MCMC

samples for determining the mean.

5.6 Comparison to Manual Tuning

In the original paper, the parameter values were set manually to reasonable values. We

compared the predictions made with an automatic inference method to those available

through manual parameter tuning. As ground truth, we use the observation data collected in

Tenison et al. (2016). The di�erence to ground truth is visualized in Fig. 5.

The predictions based on automatically fit parameters lead to predictions that match

the observation data better, notably in learning phase 1. With the original parameter values,

the duration of the solving stages of learning phase 1 with heights 4 and 5 were over 1

standard deviation away from the observed means, visible in the top left panel of Fig. 5. By

automatically tuning the parameter values, the duration is visibly closer to the observation

POSTERIOR ESTIMATION FOR COGNITIVE MODELS USING ABC 46

Figure 8 . A visualization of the estimated prediction error (log E) using Bayesian

optimization. Images show Gaussian process mean function through 2D and 1D slices

centered around the estimated minimum of the function (f
dur

150 ms, d

sel

430 ms, p

rec

22 %). The colormap is such that black is value 15, white is 6; lighter shades indicate better

model fit. Contours are superimposed for additional clarity. Constructed using 420

simulations from the model in batches of 20 (total duration around 560 hours of CPU time /

28 hours of wall-clock time).
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Examples of model-driven inferences
Visual attention: The items the 
user is looking for are hard to find

Motor control: The interactions 
are too hard or cumbersome to 
execute 

Navigation: User does not 
understand site structure

Aesthetics: The page is 
perceived ugly and confusing

Skills: User does not have 
sufficient motor or conceptual 
skills to use the page

Intentions and preferences: 
What items and which types of 
services or interaction users like

Errors and mistakes: Users 
inadvertently do something they 
would not have liked to

Cultural background: Language 
and other cultural explanations to 
style of use

Decision-making: Users’ 
strategies and goals in decision-
making
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Computational design of keyboard 
layouts
The new standard for the French AZERTY keyboard

Anna Feit, Mathieu Nancel et al.

Solved a very hard 
combinatorial 
problem: over 10213

possible designs



Example: Hierarchical menus
Ordering commands and assigning them into tabs and groups. 
two objectives: selection time and associativity:

Browser (Firefox)

Reader app (Adobe)

26% faster to use than 
commercial designs

Niraj Dayama



... at my NordiCHI keynote in 2014
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Example: Perceptual optimization of 
scatterplots

Micallef et al. IEEE TGCV 2017

Towards Real-time Perceptual Optimisation of Sca�erplots ELEC-E7861 Research Project in Human–Computer Interaction,

Figure 6: The same data set as in Fig. 4, optimised with the
algorithm presented in this paper, in ⇠17 seconds. Aspect
ratio: 1.3, marker size: 3, marker opacity: 0.36. Di�erence in
marker opacity likely a result of a bug in the contrast com-
putation of the original implementation.

established, that the SSIM-PIL implementation of SSIM is still too
slow for practical use. For a data set of 2 classes with 500 data points
in each, and design space of only 605 designs, the exhaustive search
(in single-core mode) takes ⇠45 seconds, of which ⇠41 seconds are
used on the SSIM computation.

A cursory look at the SSIM-PIL source code shows that ⇠20 sec-
onds are spent on unnecessary image format shu�ing that could
easily be optimised away. However, additional improvements might
require more e�ort. One option to consider–that was not yet evalu-
ated in this paper–is to downscale the images before SSIM compu-
tation.

5 DISCUSSION
Achieving a 100-fold increase in performance is a major step to-
wards the goal of Micallef et al. [2] in “supporting non-experts in
the rapid design of e�ective scatterplots.” Given the current per-
formance of the new algorithm, I believe it is already possible to
apply it to real-time use cases for optimising single-class data sets.

In addition to the end users, the improved performance bene�ts
researchers as well. As the quality measures are evaluated faster,

Figure 7: A random data set with 15 625 data points, opti-
mised (in ⇠16 seconds) for correlation estimation using the
algorithm presented in this paper.

Figure 8: A 4 class data set rendered in the default order, op-
timised using a design space of 605 designs.

automatic exploration of di�erent design spaces becomes more
feasible.

This study did not focus on evaluating the validity of the ob-
jective function developed by Micallef et al. Rather my focus was
simply on improving the performance of their algorithm. As the
evaluation of the original algorithm by Micallef et al. themselves
show clear improvement over baseline only in the outlier detection
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Interactive example galleries
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Individual differences are represented 
as model parameters

Table 1. Individual abilities modeled by Touch-WLM

Variable Explanation Domain

Eye movements
e
K

Encoding time Foveal encoding
e
k

Eccentricity factor Parafoveal encoding
t
prep

Saccade preparation Oculomotor command
t
exec

Saccade execution Oculomotor command
t
sacc

Saccade velocity Oculomotor performance

Motor performance
m

k

Total resource Motor performance
m

↵

Speed–accuracy bias Motor performance

Strategy
m

a

Finger accuracy Motor strategy
l Letters before proofing Cognitive strategy

Constants
s
key

Search time for key Visual search
t
confirm

Backspace confirmation Thinking

Mean parameter values for the young and the old adults group
(YA and OA) with the layout and baseline are displayed in
Table 3. These parameters were obtained empirically WHo-
min and -max are multiplied by 1000 to obtain the parameters
for the model (easier to handle integers). Also, in the model,
WPL reading and proofreading are both done at lth letter.

Optimization was carried out using exhaustive search.

RESULTS
This section reports our first results. We emulated multiple
user groups and present here four of them (Figure 6) with
their final designs.

Effects of decreasing finger speed
Our first exercise emulated a user with decreasing finger
speed. This corresponds to the persons having tremor and
perkinson’s. We found that decreasing finger accuracy (m

a

)
negatively affects baseline. Larger keys are better in this case.
Setting m

k

to a large value (1.0) (low finger SAT resources),
the layout displayed (Figure 6(a)) improves the WPM over
baseline by 13.83% to 2.21. In addition, adjusting the m

↵

,
i.e., the finger strategy weight parameter, between the ex-
tremes [0.1, 0.9] does not change the overall result.

Table 2. Design factor value ranges in design optimization

Parameter Range

Number of rows in the prediction list 1–5
Elements in each row of the prediction list 3
Row height 0.03%–0.07%*
Number of rows in text display area 2–7

* = represented as percentage of the display height (in pixel)

Table 3. Model parameter values

Parameter YA mean OA mean Baseline Variable

EMMA(s) 0.0134 0.0135 0.007 t
sacc

EMMA(p) 0.292 0.326 0.333 t
prep

WHo-k 0.116 0.138 0.126 m
k

WHo-a 0.616 0.681 0.577 m
a

WHo-min 0.00613 0.00714 7*
WHo-max 0.0753 0.0538 150*
Proofing 2.71 2.87 l
Bspace decide 0.781 1.43 1 t

confirm

Vis search (ms) 1066 1401 s
key

* = spread

Figure 6. We design four keyboard layouts supporting several abilities:
(a) this layout is designed for people who has essential tremor or parkin-
son’s, (b) this layout is suitable for incurring lesser visual search time
to the people who have prior knowledge about the layout, (c) and (d)
these layouts support in achieving less proofreading time while typing,
specially for users having reading disabilities, i.e. dyslexia.
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Fig. 4. (a) Baseline and optimized designs for (b) people with essential tremor or Parkinson’s and (c) users with reading disabilities.

based on behavioral data. Such a system could be useful
when disabilities worsen over time or change abruptly
during use.

Previous work on ability-based optimization has been
limited to motor performance and addressed other abilities
via heuristics, if at all. Realistic models of individual capa-
bilities must be embraced if we are to address increasingly
important and complex user tasks. This paper has shown
that individual-specific capabilities can be described in a
theoretically plausible manner for predictive models famil-
iar in HCI research. While more empirical work is needed to
evaluate the results, the first evidence acquired in this paper
is promising. While first evidence was found for the design
targeting tremor, more work is needed to empirically test
the design for dyslexics.

Perhaps the most critical challenge for the future is to
formally understand disabilities. We must define optimiza-
tion approaches that tackle the toughest challenges disabled
people face in interaction. Their existing aids, peripherals,
and prostheses should be characterized and included in the
design spaces, for making the most of known-good solu-
tions. At the same time, we need to work with clinicians and
neuroscientists to produce increasingly plausible models of
their disabilities. Optimized designs should be subjected to
rigorous empirical testing to avoid mischaracterizing them.
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precise movements (small y) require more movement time
(large x), whereas fast movements (small x) entail less
precision (large y). Everyone has a unique speed–accuracy
curve, dictated by m

k

and m

↵

. On this curve, the individual
can choose a point matching how he or she wishes to
balance speed and accuracy of pointing. Human physiology
sets hard constraints to maximal accuracy y0 and speed x0.
There are also individual-level limits to speed and accuracy,
such that x < x

max

(maximal speed) and y > y

min

(minimum pointing spread).
In the context of this model, we define tremor as a large

minimum endpoint spread y

min

. For a healthy adult with no
noticeable tremor, finger endpoint spread under maximal-
accuracy conditions is, on average, 0.01 cm [23]. A person
with essential tremor has an average tremor amplitude of
4.7 cm, and the figure for someone with Parkinson’s disease
is 10.6 cm [23].

The model presented here deals with only a subset of
tremor-related pointing problems, mainly of speed and ac-
curacy. Premature and multiple touching [7] are not covered
by our model. However, extensions are possible.

3.3.2 Dyslexia

The time that it takes to inspect text is longer for dyslexics
than non-dyslexics [24]. In text entry, visual attention is
divided between proofreading and guiding the finger on
the software keyboard. If proofreading takes the user a
long time, this inevitably leads to poorer touchscreen typing
performance.

A dyslexic user’s performance can be captured with a
reading model that parameterizes time for reading a word,
given its frequency [25]:

T

e

= E

K

· [�log(f)] · eek·✏, (2)

where f is the frequency of the word and ✏ is the visual
distance of the target. Higher values for the parameter E

K

increase total letter- and word-inspection times so can be
used in simulating dyslexia.

Additionally, higher e

k

values can be used to simulate
poorer visual acuity, because they make the visual distance
of the object have a greater impact on reading speed. The
non-dyslexic’s value for E

K

is set to 0.006 [25]; for a hypo-
thetical dyslexic, who needs twice as long as a non-dyslexic
to read the word, the value should be 0.012.

3.3.3 Memory Dysfunction

Memory functioning has a significant role in complex tasks
like text entry. We model the role of memory—and that of
memory dysfunction—in typing, by implementing a mem-
ory and expertise model. The model utilized by Jokinen et
al. [21] features parameters for long-term memory retrieval
time and learning speed:

T

i

= Fe

�fBi
, (3)

which gives the time T

i

to retrieve a memory entry i, given
its activation B

i

(calculated from how often the entry is
used). Increasing F increases retrieval times, to a point
where retrieval from long-term memory is extremely un-
reliable. High f models a situation wherein the user would
require numerous instances of exposure before the memory

entry can be reliably retrieved. Further, the modeler can
specify a baseline activation parameter B, a value added
to or subtracted from each B

i

for simulating the effect of
memory dysfunction [18].

4 DESIGNS OPTIMIZED FOR IMPAIRED USERS

The results presented in this section were obtained using ex-
haustive search of the design space, evaluating the designs
using Touch-WLM.

Its parameters were set for dyslexia and essential tremor
or Parkinson’s by reference to literature. For the tremor case,
y

min

was set to correspond to about 2 cm finger endpoint
spread [23]. For dyslexia, scaling parameter E

K

for reading
time in Equation 2 was doubled from the default 0.006, to
0.012, and proofing time was doubled accordingly [24], [26].

4.1 Tremor
Our optimized design increases the predicted typing speed
of a person with tremor by 16%. It permits very low error
rates.

When no tremor and the baseline design is assumed, the
model predicts 15.7 WPM. However, assuming a user with
tremor (y

min

at 2 cm resting tremor [23]), using the baseline
design, WPM drops to 1.9 with a very large error rate of
60% (see Figure 2). Figure 3 illustrates the tremor model
using the baseline design, making typing errors, and then
having to spend time correcting them. In practice, this user
would be unable to type with this design.

The optimizer suggests to fix this by using a layout that
groups three letters per button, as shown in Figure 4b. With
this layout, the simulated user achieves a 16% improvement
(to 2.2 WPM) and the error rate falls to 5%. While there is
an improvement in speed, it should be noted that the final
typing speed is still fairly slow. However, the error rate has
dropped from 60% to an acceptable level, which enables the
individual to type.

The optimized design allows a user with tremor hit-
ting correct keys more often. This reduces the error rate

Fig. 2. Simulated typing speed (WPM) and error rate for a tremor model
with a baseline Qwerty keyboard and an optimized keyboard using a
grouped layout and word prediction (Fig. 4b). Typing performance is
predicted to improve in terms of speed and in particular in terms of
accuracy. Sarcar et al. 2018 IEEE P C
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[Gobert et al. IUI’19]



Individualizing web pages
1. Most-Encountered 2. Serial Position Curve 3. Visual Statistical Learning 4. Generative Model of Positional Learning

History Original
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User clicking: 60% sports, 20% entertainment, 20% business

Optimizes for: Perceptual fluency, 
saliency, selection time
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Levels of intelligence 
in design
Level 0: Design by intuition
Level 1: Design by models
Level 2: Design by optimization
Level 3: Design by learning

Level 4: Combine Levels 0 - 3



Future: Combine model-based methods 
with deep learning
Benefit from their high representational power 
while retaining causal mechanisms that enable 
counterfactual decisions and controllability

Black box 
models 

(data first)

White box 
models 

(theory-first)
“Dark grey
models”
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Two very hard challenges

The Winograd & Flores’ argument
Design depends on linguistic 
intelligence from the user

The Dreyfus argument
Human-like being-in-the-world and 
social acculturation required for real 
intelligence Visuo-spatial-motor aspects of 

design are within reach, but 
social and linguistic not yet?
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