## TIME AND LOCATION RECOMMENDATION FOR CRIME PREVENTION

Yihong Zhang Panote Siriaraya Yukiko Kawai Adam Jatowt

#### **Overview**

- Background
- Modeling crime inference as a recommendation problem
- Solutions to crime inference as a recommendation problem
- Experimental Evaluation
- Conclusion

#### Why Crime Prediction

- Police departments would like to send targeted patrol to places where crime is likely to happen
- Residents and tourists would like to avoid dangerous places
- Policy makes would want to investigate the cause of high crime rates in certain area

#### Availability of Crime Data

- In recent years, more and more cities put its crime data online
  - New York City
  - Los Angeles
  - Chicago
  - Philadelphia
- Crime data contains rich information
  - Exact GPS coordinates of crime
  - Time of crime specified to minutes
  - Type of crime

#### Crime Prediction: Current State-of-Art

- Crime rate prediction: the number of crimes that will occur in the area
  - Regression
  - Large geographical unit: zip-code area, grids of 2km x 2km cell size
- Next moment prediction: the likelihood a crime will occur in the next time unit in an area
  - Binary classification
  - Smaller geographical unit
  - Techniques usually need to down sample negative instances
- Granularity vs Sparsity

#### **Recommendation Problem**

| ß |   | 3 | 5 |   |
|---|---|---|---|---|
| 2 |   | 4 | 3 | 2 |
| Δ | 1 | 5 |   |   |
| Δ |   | 4 | 4 | 3 |

#### **Recommendation Problem**

| 2 | ? | 3 | 5 | ? |
|---|---|---|---|---|
| ß | ? | 4 | 3 | 2 |
| 2 | 1 | 5 | ? | ? |
| Δ | ? | 4 | 4 | 3 |

# Similarity Between User-Item Data and Spatio-Temporal Crime Data

- Spatial consistency of crime
  - Certain crime is said to be location-dependent (see near repeat theory [1]), and the crime number depends on the potential criminal living in the area
- Temporal consistency of crime
  - To some degree crime follows daily routine patterns of residents around the area
  - For example, theft happens more in the night during the dinner hour than in the day, because people (potential victims) are more likely to be outside

#### Time and Location Recommendation for Crime Prevention

| Ŀ | Ŀ | Ŀ | Ŀ |
|---|---|---|---|
|   | 3 | 5 |   |
|   | 4 | 3 | 2 |
| 1 | 5 |   |   |
|   | 4 | 4 | 3 |

#### Why Location as User and Time as Item?

- Reason 1: the number of location is much larger than the number of time units
  - in a typical recommendation problem, the number of users is far more than the number of items
- Reason 2: crimes are mostly caused by the criminals living in the neighborhood
  - it is more appropriate to represent the human factor as the location

### Sparsity

- Typical sparsity in a product review dataset: 90%
- Our spatio-temporal unit for crime data
  - 200m x 200m blocks
  - 24 x 7 hours in a week
- Sparsity (San Francisco crimes):

|         | 0           | 1         | 2          | 3         | 4         | $\geq 5$  | sparsity |
|---------|-------------|-----------|------------|-----------|-----------|-----------|----------|
| theft   | $346,\!970$ | 18,565    | $13,\!264$ | $5,\!990$ | $3,\!971$ | $7,\!888$ | 0.87     |
| assault | $30,\!6278$ | $76,\!56$ | $5,\!446$  | $2,\!055$ | $1,\!421$ | 1,720     | 0.94     |

Table 1. Crime number and sparsity for crimes in SF.

#### **Solving Recommendation Problem**

- Collaborative filtering
- Context-based methods
  - Tensor Decomposition Analysis
  - Latent Topic Analysis

#### **Collaborative Filtering**

- Item-based / user-based
- Similarity matrix

$$sim(i,j) = \cos(\overrightarrow{i},\overrightarrow{j}) = \frac{\overrightarrow{i}\cdot\overrightarrow{j}}{||\overrightarrow{i}||_2 * ||\overrightarrow{j}||_2}$$

Predicting scores based on similarity

$$P_{u,i} = \frac{\sum_{j=1}^{N} sim(i,j) * R_{u,j}}{\sum_{j=1}^{N} sim(i,j)}$$

#### Adding Context Information

- In product recommendation, it is common to consider user review comments
- Features extracted from review text can be added as another dimension of information in recommendation

#### **Generating Context**

- Row data: tweets with coordinate tags
- Align tweets to crimes in spatio-temporal units
- Feature extraction from tweets
  - Bag-of-words
  - Convert tweets to vectors using pre-trained word embeddings (GloVe)

#### **Context-based Methods**

- Tensor decomposition
  - Using decomposed low rank matrix to approximate data
  - Learn by gradient descent
  - Missing values can be computed by multiplication of low rank matrix
- Latent Topic Analysis
  - Models contextual data as latent topics
  - Parameters controls the influence of user, item, and context
  - Can make prediction with a small number of rating records

#### Experimental Evaluation - Nonrecommendation Baselines

- Historical sum
  - consider the same amount of crimes are likely to happen in the same location and the same hour in the future as in the past
- Auto-Regressive Integrated Moving Average (ARIMA)
  - a common method used in time series forecasting
- Vector Auto-Regression (VAR)
  - a popular forecast method that combines multiple signals together in an AR model
- Kernel Density Estimation (KDE)
  - a popular interpolation method to estimate crime in areas where there is lack of previous crime records
  - A separate KDE model for each hour

#### **Experimental Evaluation - Dataset**

- Theft and assault data from San Francisco
  - Studied period: 100 weeks starting from 2016
  - theft: 151k
  - assault: 42k
- Contextual data
  - Tweets collected in 2016 and 2017
  - Total number: 371k tweets
  - To avoid bots, we remove tweets from the top 1% most frequently posting users

#### **Rating Approximation Evaluation**

- The accuracy of the recommendation model in the training data, measure by MAE
- Lower MAE means better approximation (e.g., by low rank matrix multiplication)

|         | ARIMA | VAR   | TD    | $\operatorname{HFT}$ |
|---------|-------|-------|-------|----------------------|
| theft   | 2.306 | 1.946 | 2.299 | 1.408                |
| assault | 2.089 | 1.978 | 2.085 | 1.645                |

Table 2. MAE of recommendation and non-recommendation methods

#### **Predicting Future Crime Number**



#### **Predicting Future Crime Number**

#### • 80 weeks training, 20 weeks testing

**Table 3.** Future crime prediction accuracy with recommendation and non-recommendation methods

|                      | theft |              |             | assault |             |                   |
|----------------------|-------|--------------|-------------|---------|-------------|-------------------|
|                      | AUC   | surv 20 $\%$ | surv $50\%$ | AUC     | surv $20\%$ | ${\rm surv}~50\%$ |
| historical sum       | 0.705 | 0.202        | 0.735       | 0.588   | 0.352       | 0.598             |
| KDE                  | 0.766 | 0.579        | 0.856       | 0.681   | 0.463       | 0.744             |
| ARIMA                | 0.633 | 0.263        | 0.734       | 0.563   | 0.241       | 0.621             |
| VAR                  | 0.653 | 0.347        | 0.734       | 0.578   | 0.261       | 0.621             |
| CF Item              | 0.728 | 0.533        | 0.810       | 0.617   | 0.338       | 0.677             |
| CF User              | 0.657 | 0.463        | 0.682       | 0.536   | 0.239       | 0.528             |
| TD                   | 0.812 | 0.698        | 0.885       | 0.703   | 0.498       | 0.767             |
| $\operatorname{HFT}$ | 0.824 | 0.709        | 0.886       | 0.725   | 0.539       | 0.773             |

#### Effect of Training Data Size



#### Conclusion

- We model crime prediction as a recommendation problem
- Solutions in recommendation systems can solve the sparsity issue when assigning crimes into fine-grain spatio-temporal units
- We studied theft and assault in San Francisco. In the future, we plan to test more crime types and more cities

#### Thanks!

And Questions?

Yihong Zhang yhzhang7@gmail.com